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Abstract. Algorithmic detection of facial palsy offers the potential to
improve current practices, which usually involve labor-intensive and sub-
jective assessments by clinicians. In this paper, we present a multi-
modal fusion-based deep learning model that utilizes an MLP mixer-
based model to process unstructured data (i.e. RGB images or images
with facial line segments) and a feed-forward neural network to process
structured data (i.e. facial landmark coordinates, features of facial ex-
pressions, or handcrafted features) for detecting facial palsy. We then
contribute to a study to analyze the effect of different data modalities
and the benefits of a multimodal fusion-based approach using videos of
20 facial palsy patients and 20 healthy subjects. Our multimodal fusion
model achieved 96.00 F1, which is significantly higher than the feed-
forward neural network trained on handcrafted features alone (82.80 F1)
and an MLP mixer-based model trained on raw RGB images (89.00 F1).

Keywords: Machine Learning · Computer Vision · Multimodal Fusion
· Facial Analysis.

1 Introduction

Patients with facial palsy usually suffer from symptoms, such as drooping mouth
and eyebrows, difficulty in closing an eyelid, and drooling. Facial palsy can have
serious consequences on patients, such as diminished feeding function, psycho-
logical distress, and social withdrawal [16]. For the diagnosis of facial palsy, clini-
cians usually perform observation-based physical examinations [11,29]. However,
it is challenging to quantify symptom intensity and variation, track changes in
these symptoms between visits for an individual patient, and compare differences
in symptoms across different patients [12].
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To address this challenge, researchers have explored various algorithmic ap-
proaches to detect facial palsy [12,22,14,30]. These approaches broadly fall into
two categories: 1) those employing machine learning models with manual feature
extraction and 2) those that leverage deep learning-based models.

In this work, we investigate the performance of diverse data modalities for
detecting facial palsy, including RGB images, facial landmark coordinates, and
handcrafted feature vectors while analyzing the impact of utilizing different deep
learning approaches. Specifically, we explore the benefits of using attention-based
image models, which divide the input images into patches, for unstructured im-
age data compared to traditional CNN-based models, such as ResNet50 [9]. Fur-
thermore, we present a multimodal fusion-based deep learning approach to ex-
plore the benefits of integrating structured and unstructured data modalities to
enhance detection performance. By leveraging the YouTube Facial Palsy (YFP)
dataset [12] and the CK+ emotion dataset [13,19], we provide a comprehensive
evaluation of deep learning models using single and multimodal data.

Our evaluation reveals that single-modality models, such as a feed-forward
neural network using handcrafted features, achieved a strong F1 score of 82.80,
while an MLP Mixer-based model [28] utilizing RGB images reached an even
higher F1 score of 89.00. Furthermore, the integration of RGB images and hand-
crafted features in our proposed multimodal fusion-based model led to a signif-
icant performance improvement, achieving an F1 score of 96.00. These findings
demonstrate the advantages of combining diverse data modalities to enhance the
accuracy and robustness of facial palsy detection.

Our primary contribution lies in assessing variations in deep-learning model
performance across diverse data modalities (i.e. facial landmark coordinates,
raw RGB images, etc), and demonstrating the benefit of integrating handcrafted
manual features alongside image-based modalities to improve model performance
in diagnosing facial palsy. This study establishes a benchmark for future research
in facial palsy diagnosis, providing valuable insights into the contributions of
individual modalities and the potential of multimodal fusion approaches.

2 Related Work

Manual Feature-based Approaches Manual feature extraction approaches
have been extensively explored in facial palsy diagnostics research. These ap-
proaches typically fall into one of these three categories: Quantitative Analysis
of Movement, 3D Scanning and Photogrammetry-Based Methods, and Hybrid
and Automated Manual Feature Extraction.

Demeco et al. [5] combined surface electromyography (sEMG) and kinematic
analysis to assess muscle function, achieving high intra-subject reliability (ICC
= 0.94) and interrater reliability (ICC = 0.91). Similarly, He et al. [10] used
Local Binary Patterns (LBP) to analyse motion in biomedical videos, measuring
symmetry via resistor-average distance (RAD) between LBP features extracted
from both sides of the face.
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Meitjs et al. [21] introduced stereo-photogrammetry for non-intrusive, precise
3D facial measurements, originally designed to measure the facial dysmorphol-
ogy in children with fetal alcohol syndrome, but adaptable for facial palsy diag-
nostics. Petrides et al. [25] reviewed 3D scanning systems, including stereopho-
togrammetry and structured-light scanning for soft-tissue facial assessment.

The method by Kim et al. [15] uses scale matching, global registration, and
iterative closest point (ICP) techniques to align facial data. Symmetry is an-
alyzed through distance, angular symmetry, and landmark movement on both
sides of the face. Parra-Dominguez et al. [24] proposed a set of handcrafted fea-
tures based on distance and angular symmetry computed from facial landmarks,
achieved an accuracy of 97% and precision of 94% on the training dataset.

For the manual feature-based approach, we follow the methodology outlined
by [24] for the computation of handcrafted asymmetry measures due to their
straightforward implementation and good results. For evaluation, the previous
work [24] selects 20 samples per subject for both training and testing with k-fold
cross-validation. To ensure a more rigorous evaluation, we increase the dataset
size, selecting 40-50 samples per patient for training and testing, and evaluate
model performance with Leave-One-Person-Out (LOPO) cross-validation.

Deep Learning-based Approaches Hsu et al. [12] proposed the deep-learning
based approach to detect facial palsy. It comprises three component networks:
the first detects the subject’s face, the second locates facial key points and line
segments on the detected face, and the last identifies local palsy regions. Storey
et al. [27] introduced 3DPalsyNet, an end-to-end framework using a 3D CNN ar-
chitecture with a ResNet backbone for mouth motion recognition and facial palsy
grading. Arora et al. [2] proposes a multi-model framework using an MTCNN
for classifying facial palsy.

Delannoy-Ward et al. [4] introduced a method that combines images of the
left and right sides of a subject’s face performing different expressions to create a
new asymmetrical expression. Abayomi et al. [1] introduces a novel data augmen-
tation technique called Voronoi Decomposition-Based Random Region Erasing
(VDRRE) to address challenges in deep learning-based facial palsy detection,
including data scarcity and class imbalance.

Both Abayomi et al. [1] and Yaotome et al. [31] leverage generative adver-
sarial networks (GANs) to augment training datasets using diverse face images.
Pourebadi et al. [26] proposed a novel mathematical model to simulate the dy-
namics of facial expressions, enabling the creation of realistic synthetic faces for
static image modeling and animations.

Although numerous approaches have been proposed for identifying and di-
agnosing facial palsy [29], most researchers use private, in-house clinical data.
A significant challenge in the field is the absence of a standardized framework
for benchmarking, making it difficult to systematically evaluate and compare
different approaches.

To address this, we utilized the publicly available YFP dataset [12] and the
CK+ emotion dataset [13,19] to conduct a comprehensive evaluation of deep
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learning models [12,29,23] using single and multiple data modalities. In addi-
tion, in contrast to previous studies [12,29,23], our work further investigates the
effectiveness of patch-based and transformer-based architectures, including MLP
Mixer and FasterViT with image-based data modalities.

3 Methods

In this section, we describe how we process RGB images to obtain five indepen-
dent data modalities and present the overall architectures of our single-modality
and early/late fusion models with unstructured and structured modalities.

Fig. 1: Our early fusion model integrates any structured data embedding from
a feedforward neural network with any unstructured data embedding from any
image-based model to detect a patient with facial palsy

3.1 Data Processing & Modalities

To develop an AI model, we processed raw RGB image frames of videos using
the facial landmark estimation model ([20]) to obtain five data modalities: 1)
raw RGB images (Figure 2a), 2) features of facial expressions, 3) facial landmark
coordinates (Figure 2b), 4) handcrafted manual features computed using (Figure
2c), and 5) black and white (BnW) images with line segments representing the
facial silhouette and local regions (Figure 2d).

For facial landmark coordinates, we include all 478 2-dimensional coordi-
nates of facial landmarks from the model [20]. The resulting facial landmark
coordinates are a matrix of m ∈ R478×2.
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(a) (b) (c) (d)

Fig. 2: (a) Raw RGB image, (b) Subset of 478 2-dimensional coordinates of eyes,
nose, and mouth regions overlaid on the RGB image, (c) Handcrafted Manual
Features, and (d) Black and White (BnW) Line Segments of Facial Contours

Feature vectors of facial expressions contain 52 distinct attributes, each rep-
resenting the extent of a facial expression (e.g. the extent to which each eye is
closed, or to which the mouth is opened) in a float value within the range [0, 1].
The resulting vector of features of facial expressions is denoted as b ∈ R52.

Handcrafted manual features contain 29 distinct attributes, following the
methodology outlined by [24]. Each quantifies the extent of facial asymmetry
and expression, with each feature represented as a float value in [0,1]. They char-
acterise the symmetry and alignment of key facial regions, such as the eyebrows,
eyes, and mouth. These features capture the relative positions, inclinations, and
angles of facial landmarks, as well as ratios that quantify asymmetry between
the left and right sides of the face. The resulting vector of features of facial
expressions is h ∈ R29.

To obtain the BnW line segment images, we first used the facial landmark
estimation model to generate contours of the detected face, eyebrows, and eyes,
then plotted them in white against a solid black background (Figure 2d).

3.2 Model Architectures

Given five data modalities, we explored different model architectures (i.e. feed-
forward neural networks, ResNet50-based [9], FasterViT-based [8], and MLP
Mixer-based [28] models) tailored to each data modality and combined modalities
(i.e. early and late fusion).

In contrast to previous studies [12,29,23], our work further explores the ef-
fectiveness of patch-based architectures such as MLP Mixer [28] and FasterViT
[8]. These models are structurally similar, as both divide the input image into
smaller, non-overlapping patches before using them for computation. By process-
ing patches which are non-overlapping, these models can better focus on facial
regions critical for detecting asymmetries associated with facial palsy, ultimately
boosting detection accuracy and robustness.
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Problem Formulation We formulated the detection of facial palsy as a binary
classification task, where the presence of facial palsy is defined as the presence
of palsy. This approach allows us to indicate either the presence or absence of
facial palsy for each image.

Given the binary classification task, we applied the Binary Cross-Entropy
(BCE) as the objective loss function.

BCE = −(y log(p) + (1− y) log(1− p))

Feed-forward Neural Network Model Feed-forward Neural Network (FNN)
models were trained to perform classification using facial landmark coordinates,
feature vectors of facial expressions, and handcrafted manual features separately.

The FNN Model for features of facial expressions comprises three linear lay-
ers with intermediate batch normalization and ReLU activations, followed by a
sigmoid layer for binary classification. We utilised the hidden unit sizes of 52,
32, 10, 2.

The FNN Model for facial landmark coordinates comprises six hidden layers
with dropout regularisation applied at varying probabilities (0.25, 0.3, 0.5, 0.1).
We utilised the hidden unit sizes of 956, 512, 256, 128, 64, 32, 2, employing batch
normalization and ReLU activations to stabilize and improve learning. The final
layer also uses a sigmoid activation for binary classification.

The FNN Model for handcrafted manual features has a consistent width of 59
neurons across its hidden layers. The network consists of multiple linear layers (15
hidden layers total), each followed by ReLU activation and batch normalization.
The final layer also uses a sigmoid activation for binary classification.

The FFN architectures and hyperparameters were chosen empirically based
on which gave the best performance (e.g. after changing the number of lay-
ers, number of neurons). All FNN models were trained with a learning rate of
0.2045, batch size 256, and SGD optimiser. The FFN model for features of facial
expressions was trained for 1000 epochs, and the FFN model for coordinates and
handcrafted features were trained for 3000 epochs.

ResNet50-based models For ResNet50-based models, we fine-tuned the pre-
trained ResNet50 model [9] to perform classification using raw RGB images or
BnW images with line segments. The final layer in the pre-trained ResNet50
model was modified to include a fully-connected layer of 512 hidden units fol-
lowed by a ReLU activation function, a dropout layer, and a 1-dimensional batch
norm layer and another fully-connected layer with a sigmoid activation at the
end to output class probabilities. For transfer learning, all model parameters are
frozen, except for those in the final layer and modified classification layer.

The ResNet50-based models were trained using the SGD optimizer with a
learning rate of 0.01. For RGB images, we applied a batch size of 256 for 20
epochs. For the black-and white (BnW) line segment images, we applied a batch
size of 128 for a maximum of 100 epochs with early stopping based on training
loss, and patience of 3 epochs.
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FasterViT-based models FasterViT [8] leverages a hybrid convolution-attention
design where patches enable parallel processing, reducing memory usage while
maintaining high accuracy. For FasterViT-based models, we fine-tuned the pre-
trained FasterVit-0 model [8] to perform classification using raw RGB images or
BnW images with line segments. For transfer learning, all model parameters are
frozen, except for those in the final convolution-attention layer.

For RGB images, the FasterViT model was trained with 0.001 learning rate,
batch size 256 and AdamW optimizer for 20 epochs. For BnW line segment
images, the FasterViT-based model was trained using the AdamW optimizer
with a learning rate of 0.001, and a batch size of 128 for a maximum of 100
epochs with early stopping based on training loss, and patience of 3 epochs.

MLP Mixer-based models In MLP Mixer [28], patch embeddings allow ef-
ficient global feature mixing through token-mixing and channel-mixing layers,
enabling the capture of both spatial and semantic information. For MLP Mixer-
based models, we fine-tuned the pre-trained MLP Mixer B-16 model [28] to per-
form classification using raw RGB images or BnW images with line segments.
For transfer learning, all model parameters are frozen, except for those in the
final MLP-Mixer block and classification head.

The MLP Mixer-based models were trained with a learning rate of 0.01 and
SGD optimizer. For RGB images, the MLP Mixer-based model was trained with
a batch size of 256 for 40 epochs. For BnW line segment images, the MLP Mixer-
based model was trained with a batch size of 128 for a maximum of 100 epochs
with early stopping based on training loss, and patience of 3 epochs.

Early & Late Fusion Models With the goal of improving facial palsy detec-
tion, we explored a multimodal fusion approach [3] using both structured and
unstructured data. Specifically, we utilized model-agnostic approaches: 1) early
fusion that integrates two data modalities after extracting their features and
concatenating their features, and 2) late fusion that integrates the outputs of
the models using each of the modalities (Figure 1).

For our fusion models, we utilized the models that were independently trained
using a single modality (Section 3.1) and then empirically identified two modal-
ities that achieved the highest performance in facial palsy detection.

For early fusion, we extracted the feature vectors from two models that were
independently trained using a single modality and concatenated these feature
vectors to train an early fusion model (Figure 1). We empirically chose the
intermediate layer of a model using a single model to extract a feature vector.
The early fusion model consists of four fully connected layers, in which we applied
batch normalization for regularization with LeakyReLU activation functions.

For late fusion, we computed the average of the output probabilities from two
models that were independently trained using a single modality (e.g. handcrafted
features or raw RGB images) and generated the model predictions on the class
with the highest mean probability.
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Early fusion models were trained using the SGD optimizer with a batch size
of 128 for a maximum of 100 epochs with early stopping based on training loss
similar to the Bnw line segment image models. The fusion model using hand-
crafted features + RGB image embedding from the MLP Mixer-based model was
trained with a learning rate of 0.01, while the fusion model using the handcrafted
features and BnW line segment embedding from the ResNet50-based model was
trained with a learning rate of 0.001.

4 Experiments

4.1 Dataset

Our experiments were conducted using two datasets: the YouTube Facial Palsy
(YFP) dataset by [12] and the Extended Cohn-Kanade (CK+) dataset [13,19].

The YFP dataset has been labeled by three independent clinicians. It consists
of 31 videos collected from 21 facial palsy patients, and some patients have
provided multiple videos. In each video, the patient talks to the camera, recording
variations in their facial expressions over time. Each video has been converted
to an image sequence with a sampling rate of 6 FPS. For each image in the
sequence, the dataset contains labels indicating the intensity of palsy in two
facial regions (i.e. the eyes and mouth) where it can be observed.

The CK+ dataset consists 593 video sequences from 123 different subjects
aged 18-50 years, with gender and racial diversity. Each video is recorded at
30 FPS and frames are labelled with one of seven expressions: anger, contempt,
disgust, fear, happiness, sadness, and surprise. The CK+ dataset is posed, mean-
ing that all facial expressions are intentionally acted out by the subjects in a
controlled environment. The CK+ dataset is included to ensure robustness to
variations in facial expressions.

4.2 Evaluation

Data Splitting Strategy For the evaluation of different data modalities and
model architectures, we applied the leave-one-patient-out (LOPO) cross-validation,
in which we trained the model using data except for held-out data from a patient
for testing and we repeated this process over 21 patients. For each iteration of
LOPO, the training dataset consists of samples from 20 palsy patients from the
YFP dataset and 20 healthy subjects from the CK+ dataset. 50 samples are
collected from each palsy patient and healthy subject.

For each iteration of LOPO, the testing dataset consists of samples collected
from the remaining held-out palsy patient and another 20 healthy subjects from
the CK+ dataset. 50 samples are collected from the held-out palsy patient, and
2 samples are collected from each of the 20 CK+ subjects used for testing.

For each LOPO iteration, we recorded the F1-score, precision, and recall and
then averaged these metrics for each data modality and model architecture.
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Data Sampling Strategy Without careful sampling for palsy patients, some
levels of palsy severity (e.g., SlightPalsy-Eyes-Normal-Mouth) might be overrep-
resented, while others might be underrepresented with random sampling for each
palsy patient. This issue can happen even if the patient has samples for all label
combinations. To address this, while the target sample count for each subject is
not reached, we select one sample from each unique palsy intensity label class in
a round-robin fashion.

5 Results & Discussion

Table 1 presents the experimental outcomes across various data modalities along-
side the corresponding single-modal or multimodal models trained on them.

Table 1: Results of different data modalities and model architectures
Data Modality Model Average F1 Average Precision Average Recall

Features of Facial Expressions Feed-forward Neural Network 83.95 88.65 82.50
Coordinates Feed-forward Neural Network 67.80 76.80 66.60

Handcrafted Manual Features [24] Feed-forward Neural Network 82.80 82.85 88.30

RGB Images ResNet50 85.00 96.00 76.70
RGB Images FasterViT 84.00 89.90 81.50
RGB Images MLP Mixer 89.00 96.60 88.00

BnW LineSegment Images ResNet50 77.00 85.40 70.70
BnW LineSegment Images FasterViT 67.00 83.84 58.23
BnW LineSegment Images MLP Mixer 58.00 78.50 49.95

Handcrafted Manual Features +
RGB Images

Early Fusion Model
(MLP Mixer + Feedforward Model) 96.00 94.80 98.30

Handcrafted Manual Features +
BnW LineSegment Images

Early Fusion Model
(ResNet50 + Feedforward Model) 79.90 94.00 76.50

Handcrafted Manual Features +
RGB Images

Late Fusion Model
(MLP Mixer + Feedforward Model) 83.00 77.95 94.70

Handcrafted Manual Features +
BnW LineSegment Images

Late Fusion Model
(ResNet50 + Feedforward Model) 72.45 75.60 81.25

Among structured data modalities, the FFN model using features of fa-
cial expressions achieved the highest F1-score of 83.95 and the highest
precision of 88.65. However, the FFN model using handcrafted manual
features achieved the highest recall of 88.30 for a similar F1-score of 82.80.
Given the higher cost associated with missing cases of facial palsy, we prioritize
the handcrafted manual features modality to minimize false negatives.

Among the models trained on RGB images (unstructured data), the MLP
Mixer model achieved the highest F1-score of 89.00, precision of 96.60,
and recall of 88.00. Among the models trained on BnW Line Segment images
(unstructured data), the ResNet50 model achieved the highest F1-score of 77.00,
precision of 85.40, and recall of 70.70. Given these results, we further explored
the benefit of integrating the data modalities of raw RGB images using MLP
Mixer-based embeddings with handcrafted manual features.
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When combining structured data (handcrafted manual features) and un-
structured data (raw RGB images), the early fusion model demonstrated
the best overall performance, achieving the highest F1-score of 96.00
and recall of 98.30, significantly outperforming both single-modality mod-
els. Specifically, the early fusion model surpassed the performance of the FFN
trained on manual features by 13.20 in F1-score and 10.00 in recall respectively
and the MLP Mixer-based model trained on RGB images by 7.00 and 10.30 in
F1-score and recall respectively. While the MLP Mixer-based model trained on
RGB images achieved the highest precision of 96.60, its F1-score of 89.00 and
recall of 88.00 were lower compared to the early fusion model.

Interestingly, when utilizing with RGB images, the MLP Mixer-based model
(F1-score of 89.00 and precision of 96.60) outperformed the ResNet50-based
model (F1-score of 85.00 and precision of 96.00) by achieving higher average F1-
score and precision respectively. This suggests that the token-mixing mechanism
of the MLP Mixer-based model, which processes input images by dividing them
into fixed-size patches and independently applying transformations along spatial
and channel dimensions, may offer a competitive alternative to traditional con-
volutional architectures. Its spatial token mixing enables the model to capture
long-range dependencies across patches, while channel mixing enhances feature
extraction by processing information across multiple feature dimensions.

Future work will focus on refining fusion techniques and exploring video-
based, temporal approaches [17] to further enhance detection accuracy and ro-
bustness. In addition, we will study how to make an AI output explainable [6,17]
to clinicians, aiming to support effective clinicial assistance to improve the clin-
ical practices [7,18].

6 Conclusion

We contribute to a comprehensive analysis of deep learning models utilizing dif-
ferent data modalities, including RGB images, facial landmark coordinates, and
handcrafted feature vectors and the combinations of unstructured and struc-
tured data modalities. Our findings demonstrate that models leveraging single
modalities, such as handcrafted features or RGB images, performed well indi-
vidually. The feed-forward neural network using handcrafted features achieved
an F1 score of 82.80 while the MLP Mixer-based model using RGB images
reached an F1 score of 89.00. Moreover, our proposed multimodal fusion-based
deep learning model, which integrates RGB images with the MLP Mixer-based
model and handcrafted features, significantly improved the F1 score to 96.00,
highlighting the benefits of combining diverse data modalities. By utilizing the
publicly available YouTube Facial Palsy dataset and the CK+ emotion dataset,
and providing a detailed comparison of performance across various deep learning
models, this study provides a solid foundation for future benchmarking efforts.
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