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Abstract— Autonomous rehabilitation support solutions,
such as virtual coaches, should provide real-time feed-
back to improve motor function and maintain patient
engagement. However, fully annotated dataset collection
for real-time exercise assessment is time-consuming and
costly, posing a barrier to evaluating proposed methods.
In this work, we present a novel framework that learns
a frame-level classifier using weakly annotated videos
for real-time assessment of compensatory motions in
stroke rehabilitation exercises by generating pseudo-
labels at a frame level. We consider three approaches:
1) a baseline approach that uses a source dataset to train
a frame-level classifier, 2) a transfer learning approach
that uses target dataset video-level labels and parame-
ters learned from a source dataset with frame-level labels,
and 3) a semi-supervised approach that leverages a target
dataset video-level labels and a small set of frame-level
labels. We intend to generalize to a weakly labeled target
dataset with new exercises and patients. To validate the
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approach, we use two datasets annotated on compensatory
motions: TULE, an existing video and frame-level labeled
dataset of 15 post-stroke patients and three exercises,
and SERE, a new dataset of 20 post-stroke patients and five
exercises, created by the authors, with video-level labels
and a small amount of frame-level labels. We show that a
frame-level classifier trained on TULE does not generalize
well on SERE (fy = 72.87%), but our semi-supervised
and transfer learning approaches achieve, respectively,
fi =78.93% and fi = 80.47%. Generating pseudo-labels
leads to better frame-level classification results for the
target dataset than training a classifier with the source
dataset (baseline). Thus, the proposed approach can sim-
plify the customization of virtual coaches to new patients
and exercises with low data annotation efforts.

Index Terms— Compensatory motion patterns, dataset,
pseudo-labeling, real-time motion assessment, saliency
maps, stroke rehabilitation, weakly supervised learning.

. INTRODUCTION

NDIVIDUALS with neurological conditions (e.g., stroke)
Ineed immediate and prolonged rehabilitation therapy [1],
[2] with repetitive task-oriented exercises [3], [4], [5]. Ther-
apists assess motor function, guide exercises, and provide
feedback [1], [6], [7], [8]. Due to a shortage of therapists
and high rehabilitation costs [9], [10], [11], [12], patients
are encouraged to exercise autonomously at home or between
therapy sessions [13]. Exercising alone leads to challenges in
keeping motivation and engagement, hindering recovery [9],
[10], [14]. This has sparked interest in developing reha-
bilitation support systems, as virtual coaches (VCs). VCs
should assess exercise performance and offer proper real-time
feedback, helping motor function improvement by providing a
personalized and pleasant therapeutic experience [15], [16]. As
an extra to clinical interventions, they can enhance autonomy
and independence, leading to more effective recovery over
time.

Advances in Computer Vision and Machine Learning (ML)
enabled automated objective assessment of impaired motor
function from recorded videos [17], [18], [19], [20]. To deliver
real-time feedback, VCs must assess patients’ motions in
real time. While ML algorithms for performance evaluation
after exercise completion use video-level labels (VLL) [20],
real-time assessment requires frame-level labels (FLL).

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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However, collecting fully labeled datasets is time-consuming,
costly, and impractical for many real-world applica-
tions [21], [22]. In addition, data labeling relies on domain
experts’ availability and experience.

Previous works in real-time feedback generation use fully
supervised models for real-time exercise assessment, rely-
ing on detailed frame-level video annotation [23], [24], [25].
Lee and Choy [26] explored a gradient-based Explainable Al
(XAI) technique to create frame-level pseudo-labels (FLPL)
for compensatory motion detection. Yet, further analysis on
the usability of pseudo-labels for training fully supervised
classifiers for frame-level assessment is lacking. Thus, real-
time motion assessment from video-level annotation was
not achieved yet. In addition, it is unclear how we can
utilize an existing dataset and transfer to develop a tuned
model for a new patient.

In rehabilitation research, testing proposed methods with
real patients’ data is crucial. Dataset collection is a lengthy
procedure, requiring therapists’ availability, patient consent for
personal data recording, and ethical approvals [21]. As a result,
researchers or healthy volunteers often simulate impaired
motions for model evaluation [25], [27], [28] highlighting
the data collection challenges. Additionally, existing datasets
cover a limited number of motions [29] or provide general
annotations on exercise correctness [30].

In this work, we present a novel framework that learns a
frame-level classifier (FLC) from VLL for real-time video
assessment of compensatory motions (e.g., trunk tilt) in
rehabilitation exercises, aiming to ease the demands of data
labeling when evaluating new patients and exercises. We
aim to assess in real-time compensatory motions in a newly
collected weakly labeled dataset (target dataset), i.e., only with
VLL and a small amount of FLL. To accomplish this, we make
use of the knowledge provided by a previously collected
dataset (source dataset). We consider three approaches:

1) A baseline approach that uses a source dataset to train

a FLC;

2) A transfer learning approach that uses VLL of a target
dataset and a threshold parameter learned from a source
dataset with FLL to produce FLPL to train a FLC;

3) A semi-supervised approach that leverages the target
dataset VLL and a small set of FLL to generate FLPL
to train a FLC.

In an exploratory stage with the source dataset we apply
our approach to determine the feasibility of our framework.
For all approaches, we test the FLC on the test set of the
target dataset fully labeled at a frame level. We evaluate which
approach yields better results when generalizing to a weakly
labeled target dataset with new exercises and patients.

Aiming to explore a broader range of motions for stroke
rehabilitation, we collected a new dataset, the StrokE Rehab
Exercises (SERE)', of 20 post-stroke patients performing five
functional tasks (e.g., putting on socks) involving the upper
limbs, trunk, and legs. We recorded the videos using a ZED
Mini stereo camera and physio and occupational therapists
annotated the observed compensatory motions.

1 https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resources/#SERE

To evaluate our approach, we use two datasets: the Three
Upper Limb Exercises [20] (TULE) of 15 post-stroke patients
executing three exercises and the newly collected SERE. TULE
(source dataset) is fully labeled at a video and frame level
while SERE (target dataset) is fully labeled at a video level
but only a small set has FLL .

The baseline approach FLC achieved better True Alarm
Rate (TAR=59.02%) and AUC (71.43%) and the transfer
learning approach FLC provided improved f; score (80.47%)
and less false alarms (False Alarm Rate = 19.46%).

We discuss the potential of the proposed approach to
simplify the customization of VCs to new patients and exer-
cises, reducing efforts in data labeling, and demonstrate how
transferring knowledge across datasets can enhance evaluation
on a new weakly labeled dataset. Therefore, our framework
contributes to the development of solutions to support reha-
bilitation exercise training.

This work makes the following contributions:

o We present a novel framework that learns a FLC from
VLL, easing the demands of data labeling when evaluat-
ing new patients and exercises;

o These approaches allow real-time video compensatory
motions assessment, as VCs’ feedback can be given to
users at a frame-level,

« We introduce a new dataset of five functional tasks with
20 post-stroke patients, enabling the evaluation of our
method within several approaches:

o We evaluate FLC generalization to a weakly labeled target
dataset with new functional tasks and patients.

[l. RELATED WORK

A. Real-Time Exercise Automated Quantitative
Assessment After Stroke

Advances in motion capture technology have enhanced
the objective assessment of motion impairments [18], [19],
with systems categorized into non-vision-based (e.g., iner-
tial sensors) and vision-based solutions (marker-based and
marker-free). In contrast with high-precision marker-based
systems, marker-free options like MediaPipe [31] provide
more convenient and affordable solutions. Kinematic analysis
of body pose data is key in assessing biomechanical behavior
and tracking motor function improvement [18]. In particular,
joint angular motion is crucial in identifying motion limi-
tations [17]. These advancements have stimulated research
on rehabilitation exercise training support systems as VCs.
VCs should interact with the user maintaining motivation
and engagement in therapy while promoting motor function
improvement [15], [16]. It should evaluate motion in real time
to offer the user real-time feedback.

Researchers have explored real-time exercise assessment
using ML and rule-based approaches. Lee et al. [23] pro-
posed an interactive hybrid approach combining supervised
ML and rule-based models for frame-level compensatory
motion assessment, providing personalized feedback. Using a
supervised LSTM architecture, they predicted compensatory
patterns (e.g., trunk, shoulder, and head misalignments) at a
frame level and employed an ensemble voting method to over-
come motion boundary detection challenges. Céias et al. [24]



3336

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 33, 2025

developed a real-time assessment method for compensatory
motions (e.g., trunk rotations) using fully supervised Neu-
ral Networks (NNs) and rule-based models. Their approach
framed the problem as multilabel classification, employing
two classifiers: a primary classifier to identify frames con-
taining compensatory patterns and a secondary classifier to
determine the type of compensation. Mennella et al. [25]
introduced a deep learning system for evaluating exercise
performance by assessing the range-of-motion (ROM) and
compensatory patterns. The system consists of a ROM-
classifier, a compensation-classifier, and a module to count
valid/invalid motion repetitions. A rehabilitation expert devel-
oped an exercise protocol to validate the system, utilizing a
dataset labeled at a frame level. However, fully supervised
methods for real-time motion assessment require extensive
labeled data (e.g., at a frame level), which is costly and
time-consuming to obtain.

B. Weakly Supervised Learning Based on Feature
Saliency

As Al use expands, the associated risks grow too, mainly in
critical decision-making areas like healthcare [32], [33], [34].
This encourages research focus on understanding Al decision-
making. XAI aims to make AI’s “black box” mechanisms more
interpretable and transparent, increasing user trust. Saliency
maps appeared as explanations highlighting significant areas
of an image that influence the model’s decision [35], [36].
While primarily used for image data, adaptations of saliency
maps have also been used for time-series data [37] identifying
significant signal segments [38]. However, these methods often
only offer qualitative evaluations of saliencies.

Several works have proposed weakly supervised solutions
for semantic segmentation [39] and action recognition [40],
[41], [42], [43], using saliency maps to determine object plac-
ing or action occurrence in images and videos and assigning a
label to relevant pixels or frames using threshold methods.
These methods work with weakly labeled data, relying on
image-level or VLL denoting the existence of an object or
the occurrence of an action without specifying location or
timing. Similarly, Class Activation Maps (CAM) [36], [44],
a variation of saliency maps, have been used to assign labels to
pixels or frames, which are then used to train fully supervised
models for more precise object and action location [39], [42].
By evaluating pseudo-labels and fully supervised classifier
outcomes trained on them against ground-truth labels, these
studies enhance the quantitative evaluation of pseudo-labels
and saliency maps concerning quality and usability.

Lee and Choy [26] explored a threshold method combin-
ing a weakly supervised ML model with a gradient-based
XAl technique, utilizing saliency maps to identify important
frames for assessing compensatory patterns. Their goal was
to advance research in XAI methods for time-series data,
offering explanations for model outcomes to enhance user
adoption, particularly in critical healthcare decision-making
tasks. They computed saliency maps highlighting key joints
and frames involved in compensatory motions, allowing them
to identify when compensations occur. Researchers conducted
a preliminary analysis to assess whether the saliency scores

TABLE |
STUDIED COMPENSATORY MOTION PATTERNS
k Labels Compensatory Pattern
1 0/1 Shoulder abnormal/normal alignment
2 01 Trunk abnormal/normal alignment
3 0/1 Head abnormal/normal alignment

could be used for frame-level labeling by applying a threshold
to the normalized aggregated joint scores at each frame.
Yet, an approach for real-time assessment relying on the
training of FLC from video-level annotations, which are
easier to obtain, is still lacking. In addition, it is unclear
how we can utilize an existing dataset and transfer to
develop a tuned model for a new patient. Thus, we explore
taking advantage of a source dataset to train a FLC (base-
line approach) and to generate FLPL (transfer learning
approach).

[1l. METHODS

We propose a novel framework for a weakly supervised
approach that learns a FLC from VLL for real-time video
compensatory motion assessment in functional tasks for stroke
rehabilitation. It relies on a gradient-based technique (P-CAM)
and a threshold method to generate FLPL from salient features
and frames. FLPL are used to train a FLC for real-time
assessment. With this approach, we aim to ease the labeling
efforts to evaluate a weakly labeled dataset with new post-
stroke patients and exercises.

A. Problem Definition

We consider a set of N untrimmed videos of post-
stroke patients performing a functional task motion trial,
V = {v/}Y |. Bach video has a set of K labels, Y = {y'}IV,,
y' € {0, 1}X denoting the existence of the compensatory
motions as described in Table I and illustrated in Figure 1.
Compensation is defined by new patterns patients developed
after the stroke to achieve task target [45]. Therapists specif-
ically focus on abnormal trunk displacements (e.g., tilt and
excessive flexion), head misalignment (e.g., flexion and tilt),
and shoulder elevation and excessive abduction. We treat the
detection of a compensatory motion pattern has a multilabel
classification problem.

B. Framework for Weakly Supervised Exercise
Assessment Overview

Figure 2 describes our framework to learn a FLC from
VLL by generating FLPL indicating compensation occur-
rence in time. First, we train a VLC for video-level
assessment. With a trained VLC to determine the exis-
tence of compensatory motion patterns (Table I) in a video,
we perform a forward pass on the training set to generate
video-level predictions (Figure 2.b) For each input video,
if the predicted label denotes the absence of a compen-
satory pattern, we set all FLL as having a normal motion
(yi = 1). Otherwise, we compute a pseudo-label for each
frame through a pseudo-labeler(Figure 2.c) The pseudo-labeler
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(a) Shoulder elevation (left) (b) Trunk tilt (left) and normal (c) Head flexion/rotation (left)

and normal alignment (right).

alignment (right).

and normal alignment (right).

Fig. 1. Common types of compensatory motion patterns.
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Fig. 2. Frame-level pseudo-labels (FLPL) generation framework: (a) Preprocessing step with pose estimation and calculation of kinematic variables
to describe compensation; (b) forward pass in a video-level classifier to generate a prediction; (c) if compensation is detected, the Pseudo-Labeler

generates FLPL by applying a threshold method to salient frames.

TABLE Il
MEDIAPIPE POSE LANDMARKS
Body Joint Abbr,  MediaPlpe SRR

head hd 0

spine/trunk shoulder ss (11+12)/2
left shoulder sh! 12
left elbow eb! 14
left wrist wrl 16
right shoulder sh” 11
right elbow eb” 13
right wrist wr” 15

spine/trunk base (pelvis) sb (23+24)/2
left hip hp! 24
right hip hp" 23

applies a gradient-based technique (P-CAM) to each video-
level predicted classes to obtain a saliency map of salient
features and frames with positive gradients significant for the
VLC decision. Then, we threshold the salient frames’ gradients
to produce FLPL. Finally, we train a fully supervised FLC
with the same training data and the FLPL to achieve frame-
level compensation assessment (Figure 2.d). In the following
sections, we detail each step of the proposed pipeline.

C. Preprocessing

1) Pose Estimation: We use MediaPipe BlazePose,’as a
Python library, to track post-stroke patients’ motions by pro-
cessing video frames, as it revealed a good alignment with the
widely used Microsoft Kinect v2 [46]. MediaPipe provides
real-world 3D coordinates, in meters, of 33 pose landmarks
with the origin in a midpoint between the hips. Table II shows

2https:// ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker
https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker/python

TABLE Il
FEATURES DESCRIBING COMPENSATORY MOTIONS [20]

Notation
« Jar (Shinis  SSinir - Sh)
- ja(hp,sh,eb)
- dpty (shinir, sh, c)
forceC
© Jjai (SSinit » Sinit ,55)

Compensatory Motion Feature

- Shoulder elevation angle

Shoulder Abnormal - Shoulder abduction angle

Alignment
- Shoulder projected trajectory

Trunk Abnormal - Tilted angle of the trunk

Alignment ) . . - dptr (SSinit,55,¢)
Trunk projected trajectory for ce C

Head Abnormal ] . . - dpty (hdpjs ,hd, c)

Alignment Head projected trajectory forceC

the landmarks studied. We apply a moving average filter with a
window size of five frames to smooth the extracted trajectories.
2) Kinematic Variables Describing Compensation: We use a
set of kinematic variables to describe the three compensatory
patterns (Table I) summarized in Table III. We compute them
at each timestamp for the right and left body sidesThese
variables are the input features for our classification models
In this work, we adopt the following notation:
e ja:(j1, j2, j3) stands for Joint Angle computed among
three body joints;
o dpt;(j1, j2, c) is the projected trajectory regarding a joint
initial to current position in coordinate c;
« j specifies a joint in the set J described in Table II;
o ¢ is the video frame number in a total of 7' frames;
o ¢ denotes a coordinate in the set C € {x, y, z}.

D. Video-Level Classification

Given the positive results in this task [20], [24] [46],
we train a Multi-Layer Perceptron (MLP) classifier to assess
compensatory motion patterns in a video of an exercise move-
ment trial. Given that a video i is a sample in our training set,
we use as input the kinematic variables at each timestamp for
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all video frames, i.e., f' € RTP, where T is the maximum
number of frames in the videos, D is the number of variables,
and { is the video number. To handle videos of varying lengths,
we have added variables at # = 1 to shorter videos to match
the length of the longest sequence (padding).

We implement our models using the ‘Pyforch’ library [47],
with parameter optimization using the Optuna framework [48].
We explored architectures with one to three fully connected
layers with 16 to 4096 hidden units, with the Softmax function
in the output layer for class probability calculation, ReLU
activation function, and Cross Entropy Loss. We explored
‘Adam’ and Stochastic Gradient Descent (‘SGD’) optimizers
with a learning rate between 0.0001 and 0.1.

E. Frame-Level Pseudo-Labeler

We generate FLPL from salient features and frames, signif-
icant for VLC decision. We outline the steps for generating
the saliency map and FLPL for each video frame (Figure 2.c).

1) P-CAM: Given the video-level classification, we compute
the gradients of the predicted class score, before Softmax, w.r.t.
the input. The gradients reveal which input features and frames
influence class prediction. We inspect positive influences on
models’ decisions determined by positive gradients. Negative
gradients determine influences that drive the model towards the
opposing class, generally caused by background information or
noise [36]. Thus, we obtain a vector of gradients, S i /, matching
the shape of the input vector, given by
85};6‘0"8 : a)’};core

aft ’

0, otherwise

T (1)

s =

where 3., is the predicted class score for video i and f* is
the input vector.

2) Saliency Map of Features & Frames: The saliency map
is created by reshaping St vector into a matrix §' € RT*P,
A row has the gradients for a kinematic variable, d, across all
frames. A column is the gradient of each kinematic variable
for a specific frame, 7.

3) Frame-Wise Aggregation: From the saliency map,
we perform a frame-wise aggregation of the gradients and a
min-max normalization to bring aggregation results for each
frame into a value in [0, 1], obtaining a frame pseudo-score by

¢ — Zd Sd,t — min({Zd sd,t},T:1) )
Yo max((XgsadhZ) —min((Xgsa{Z)
where 4, is the gradient of feature d in frame 7, and s/ is the
computed pseudo-score for frame ¢ from video i.

4) Threshold Method: We apply a threshold, 7, to video
frame pseudo-scores to classify them as either normal or as a
compensatory motion, aiming for high-quality FLPL . Using
this threshold, 7, to each frame is assigned a pseudo-label, zf,

, 1, if ¥ =1
Z; = i e Al (3)
Its, <), if ' =0
where §' is the predicted class from the video-level classifica-
tion and I is an indicator function. For a normal motion trial

TABLE IV
REHABILITATION EXERCISES ON TULE AND SERE DATASETS
AND CORRESPONDING JOINT MOTIONS

Dataset Exer. Description Motions
El ‘Bring a Cup to the Mouth’ o Elbow Flexion
TULE E2 ‘Switch a Light On’ © Shoulder Flexion
E3 ‘Move a Cane Forward’ o Elbow Extension
El Brushing Hair’ . Sl?oulder ﬂe?(ion and elbow
flexion/extension
© Shoulder flexion and horizontal
E2 ‘Brushing Teeth’ abduction/adduction and elbow
SERE flexion/extension
o Elbow flexion, shoulder
. - flexion/extension and
E3 Wash the Face abduction/adduction, and arm
coordination
o Trunk flexion and slight
E4 ‘Put on Socks’ right/left rotation, shoulder flexion
and elbow flexion/extension
E5 ‘Hip Flexion’ o Hip flexion

(' = 1), all FLPL are set to 1. For a video with compensation
(' = 0), each frame pseudo-score s{ is evaluated by the
condition s' < 7. The indicator function determines that if
the condition is true, a frame pseudo-label zﬁ is set to 1 or set
to O otherwise.

F. Frame-Level Compensation Assessment

We use the training set and the FLPL to train a fully super-
vised FLC for real-time compensatory motion assessment,
easing the need for a costly data labeling process.

We explore architectures with one to three fully connected
layers with 3 to 128 hidden units, and dropout at the end
of each hidden layer with a probability between 0 and 0.5.
Additional implementation details are similar to those used
for the VLC, described in Section III-D.

G. Datasets of Functional Tasks for Rehabilitation

1) Three Upper-Limb Exercises (TULE) Dataset: TULE [20]
is a dataset of 15 post-stroke patients (63 £+ 11.43 years
old; 13 males and 2 females) performing three upper limb
task-oriented functional tasks described in Table IV. Patients
performed, on average, ten motion trials for each exercise.
Data was collected with a Microsoft Kinect v2, at a frame
rate of 30 fps. In the exercises, patients engaged one of their
upper limbs, affected or unaffected body sides’ Table VI
summarizes the number of videos in the dataset and the ratio
of videos with the three compensatory patterns. This dataset
is fully labeled at a video and frame level.

2) StrokE Rehab Exercises (SERE) Dataset: SERE* is the
newly collected dataset. Table IV describes the tasks in
which post-stroke patients engage with their affected and
unaffected limbs separately (E1 and E2), upper limbs simul-
taneously (E3), trunk (E4), and lower limbs (E5). Figure 3
illustrates the five functional tasks. Therapists suggested these
tasks to simulate daily activities that are usually compromised
for a post-stroke patient. These movements involve the overall
functionality of the limbs and serve as an effective way to
assess the quality of movement and its evolution throughout
the intervention process.

3 After stroke patients often describe weakness or loss of movement in one
body side (hemiparesis).
4https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resourccs/#SERE
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(d) E4. ‘Put on Socks’

Fig. 3. SERE functional tasks for rehabilitation.

a) Data collection: We recorded the videos at a frame rate
of 30 fps using a ZED Mini Stereo Camera from StereoLabs’
and the ZED Explorer framework provided by the ZED
SDK, operating on a Laptop with 16 GB RAM, 11th Gen
Intel(R) Core(TM) i5-11400H 2.70GHz 6 cores CPU, and
NVIDIA Geforce RTX 3060 GPU. The camera was placed
0.90m above the floor and 2.5m away from the patient,
who performed the tasks while seated in a chair to ensure
safety.

Data collection and storage comply with the General
Data Protection Regulation (GDPR). The NeuroSer exec-
utive board and the Alcoitdo Center for Rehabilitation
Medicine Ethics Committee and executive board revised and
approved all ethical and experimental procedures and pro-
tocols. The protocol CMRA2023_003 was approved by the
Alcoitao Center for Rehabilitation Medicine Ethics Committee
on April 47, 2023.

b) Farticipants: 20 post-stroke patients (7 females and
13 males), with 62.3 £ 14.77 years old and 17.46 =+
36.67 months after the stroke event, participated on data
collection and performed ten motion trials (repetitions) for
each exercise after signing an informed consent authoriz-
ing data recording. Table V summarizes patients profiles.
Table VI shows the total number of videos in the dataset
and the ratio of videos featuring each type of compensatory
motion.

¢) Annotation: Physio and occupational therapists, with
9.33 £ 1.25 yeas of experience in stroke rehabilitation,
assessed compensation during exercise performance and anno-
tated the dataset concerning the presence of compensatory
motion patterns, normal or abnormal joint range-of-motion,
motion smoothness, and joint spasticity. Therapist made their
annotations in agreement. To assess patients overall function-
ality, therapists applied the Stroke Rehabilitation Assessment
of Movement (STREAM) measurement tool [49] (Table V).
It evaluates coordination, functional mobility, and range-of-
motion of the lower and upper limbs.

5 https://www.stereolabs.com/

(e) ES. ‘Hip Flexion’

TABLE V
SERE DATASET PARTICIPANTS’ PROFILES
Patient STREAM A Sex Affected Ty Time After Stroke
D (0-70) 8¢ Side pe [years|months|
P01 36 64 M Right Ischemic 12.10 | 145.17
P0O2 49 66 M Left Hemorrhagic 1.33]16.03
P03 67 88 M Right Ischemic 1.16 | 13.90
P04 55 78 F Right Hemorrhagic 8.33]104.00
P05 - 70 M Left Ischemic 0.193.80
P06 58 61 M Left Ischemic 0.11 237
P07 46 55 M Right Hemorrhagic 0.08 | 0.87
P08 62 59 M Left Hemorrhagic 0.42]21.86
P09 - 40 F Left Ischemic 0.13 | 1.57
P10 62 78 F Left Ischemic 0.30 | 3.60
P11 43 55 F Right Hemorrhagic 0.411]4.90
P12 54 47 F Left Ischemic 0.25]3.03
P13 - 40 M Right Ischemic 0.46 | 5.47
P14 40 77 M Left Hemorrhagic 0.28 | 3.37
P15 56 72 M Left Ischemic 0.35]4.17
P16 46 75 M Left Ischemic 0.22]2.60
P17 52 36 M Right Ischemic 0.34]4.10
P18 - 43 M Left Ischemic 0.26]3.17
P19 69 64 F Right Ischemic 0.22]2.67
P20 - 78 F Left Hemorrhagic 0.22 | 2.60
TABLE VI
DATASETS CHARACTERISTICS
. . % of videos with compensation
Dataset Exercise #videos Shoulder Trunk Head
El 300 17.00 13.67 13.00
E2 298 20.47 15.77 6.71
TULE B3 299 1371 2040 -
All 897 — — —
El 400 22.50 9.00 45.50
E2 400 19.75 10.00 20.00
E3 200 23.00 20.00 45.00
SERE E4 200 - 20.00 -
E5 200 - 65.00 -
All 1400 — — —

V. EXPERIMENTS
A. Experimental Approaches

We use TULE dataset (source dataset), fully labeled at a
video and frame levels (15 post-stroke patients), and SERE
dataset (target dataset) fully labeled at a video level (20 post-
stroke patients) but with only a small subset labeled at a
frame level (seven post-stroke patients out of 20 - five for
test and two for a validation step). Figure 4, illustrates the
considered approaches to evaluate the FLC’s generalization
potential to new patients and exercises. In an exploratory
stage, we test our framework with the fully labeled TULE
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Fig. 4. Description of train and test steps of the exploratory stage with
TULE and strategies conducted with SERE dataset.

dataset and determine a set of pseudo-labeler thresholds for
FLPL generation. We consider three approaches to learn
real-time FLCs to assess compensatory motions with SERE:
1) a baseline approach that uses TULE dataset to train a FLC,
2) a transfer learning approach that leverages SERE VLL and
the pseudo-labeler thresholds determined in the exploratory
stage to generate FLPL and train an FLC, 3) a semi-supervised
learning approach that uses only SERE VLL and a small
set of FLL for FLPL generation and train a FLC. From all
approaches, the final FLCs are tested with the SERE test set
fully labeled at a frame level. For 1) and 2) we consider that
only SERE the test set has FLL for evaluation.

1) Exploratory Stage: In an exploratory stage with TULE,
we train a VLC (VLC-T in Figure 4.a) for each exercise.
We fine-tune the pseudo-labeler threshold, 7, to com-
pute FLPL (Pseudo-Labeler-7 in Figure 4.a), as depicted

in Section III-E.4, and train a fully supervised FLC (FLC-Tj
in Figure 4.a) with the FLPL. We evaluate this stage through
Leave-One-Subject-Out (LOSO) cross-validation against a
fully supervised FLC trained with ground-truth labeling. With
this exploratory stage, we inspect the loss in performance of
training the FLC with FLPL instead ground-truth FLL and
determine average (across exercises) pseudo-labeler thresh-
olds, t, for each compensatory motion pattern that are applied
afterwards for FLPL generation with SERE in the transfer
learning approach.

2) Baseline Approach: In the baseline approach, we train the
FLC (FLC-T in Figure 4.b) with TULE and test it on SERE
test set of five post-stroke patients, fully labeled at a frame-
level. We aim to evaluate how using TULE to train the FLC
may enable the assessment in real-time of SERE.

3) Transfer Learning Approach: In the transfer learning
approach, we train a VLC (VLC-S in Figure 4.c) for each
exercise with SERE training set of 15 post-stroke patients.
We use the average pseudo-labeler thresholds (across TULE
exercises), t, for each compensatory motion determined in the
exploratory stage (Table III of the supplementary materials),
to produce FLPL for SERE training set (Pseudo-Labeler-T
in Figure 4.c). The FLC (FLC-S; in Figure 4.c) is trained on
SERE training set with FLPL. We perform model hyperparam-
eter selection through LOSO cross-validation. Equally, we test
the FLC on the held-out test set of five post-stroke patients.
With this approach, we aim to inspect if the training the FLC
on SERE with FLPL and the pseudo-labeler thresholds fine-
tuned with TULE enhance frame-level assessment on SERE
test set.

4) Semi-Supervised Approach: In the semi-supervised
approach, we generation FLPL for SERE training set from
the same VLC (VLC-S in Figure 4.d) and a pseudo-labeler
for training a FLC. In this approach, we fine-tune the pseudo-
labeler threshold with a set of two post-stroke patients labeled
at a frame level, included in the training set (Pseudo-Labeler-S
in Figure 4.d). Finally, we test the FLC (FLC-S; in Figure 4.d)
using the held-out test set. With this strategy, we aim to
determine the benefit of fine-tuning the pseudo-labeler T with
samples of SERE dataset for FLPL calculation.

The FLC is trained using the videos correctly classified by
the VLC to avoid error propagation to the frame classification
step. We selected post-stroke patients for validation and test
sets arbitrarily, ensuring a balanced class distribution in those
sets and a fair number of samples of each class for training.

B. Model Evaluation Metrics

We use fi score, True Alarm Rate (TAR), False Alarm
Rate (FAR), and Area Under Curve (AUC) [50] to evaluate
our approach. f7 score is the harmonic mean of precision
(model ability to not label as positive negative samples)
and recall (model ability to identify all positive samples).
TAR (or specificity) measure model ability of identifying all
samples of a compensatory motion (negative samples in our
problem) and is given by

tn
TAR = ——— €]
tn+ fp
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where tn and fp are the number of true negatives and false
positives, respectively. FAR is the ratio of samples incorrectly
labeled as negative in our problem and is given by

FAR=_—I" (5)

fn+tp
where fn and tp are the number of false negatives and true
positives, respectively. AUC is independent of the model’s
decision threshold and indicates the model’s ability to differ-
entiate between classes.

C. Pseudo-Labeler Threshold Selection

While determining a suitable pseudo-labeler threshold, t,
we prioritized minimizing false alarms (FAR < 10%) to ensure
a reliable real-time assessment experience while maintain-
ing a high TAR (TAR > 60%) for detecting compensation.
Given a VC, post-stroke patients should keep exercising while
occasional compensations go unnoticed rather than facing
frequent inaccurate corrective feedback [24]. With an average
10-second movement trial and a frame rate of 30 fps, a FAR
below 10% results in a minimum impact of false alarms,
mainly if the feedback produced relies on a window of
frames [23], [26]. We identified a threshold that optimally
balances TAR and FAR, reflecting a trade-off suitable for the
application. If frequently exposed to incorrect feedback, the
user might loose engagement and stop exercising, which is of
major importance.

For the exploratory stage, threshold selection was based
on training set FLPL quality when directly compared
with the ground-truth, which was available (FLL training
set in Figure 4.a). The average (across exercises) thresh-
olds for each compensatory patterns, determined in the
exploratory stage, were applied in the transfer learning
approach as described in Section IV-A.3. For the semi-
supervised approach, threshold selection was based on the
FLPL quality when directly compared with the ground-truth
for the two post-stroke patients used for validation (FLL vali-
dation set in Figure 4.d). Figures 1 and 2 of the supplementary
materials illustrate the TAR and FAR curves that supported
our decision. Supplementary Table III presents the selected
thresholds.

D. Ablation Study and Computational Latency

We perform an ablation study to evaluate the impact of
lower-quality FLPL in the final FLC performance. We con-
sider the use of a generic pseudo-labeler threshold (r =
0.5) and the threshold used in [26] (r = 0.36) to gen-
erate FLPL for all compensatory patterns, differently from
the pseudo-labelers thresholds in the transfer learning and
semi-supervised approaches, which are fine-tuned for each
compensatory pattern on TULE data and SERE validation set,
respectively.

Additionally, we measure the computational latency
to assess real-time applicability., We measure the infer-
ence time per frame of pose estimation, preprocessing,
and classification that composed the pipeline of real-time
assessment.

V. RESULTS

A. Evaluation of Video-Level Compensatory Motion
Assessment

For both datasets, all tasks and compensatory motions,
VLCs performed with a fj score above 95%. As we use
trained VLCs to generate FLPL, as described in Section III-E,
good VLC performance leads to improved FLPL quality. Mod-
els’ hyperparameters are detailed in supplementary Table I.

B. Quantitative Evaluation of Frame-Level
Pseudo-Labeling Quality

In the exploratory stage with TULE dataset, FLPL quality
has an overall f; score above 90%, TAR over 80%, and
FAR under 10%. In the semi-supervised approach, FLPL
quality for the validation set achieved similar results except
for E1, trunk and head compensation, E3, shoulder and head
compensation, and E4. In these cases, TAR is below 60% and
FAR above 10%. Detailed FLPL quality results are described
in Table III of the supplementary materials.

C. Quantitative Evaluation of Frame-Level
Compensatory Motion Assessment

In the exploratory stage with TULE dataset, our approach
had an average performance (across compensatory motion
patterns) of f; of 81.93%, 51.02% TAR, a FAR of 24.15%,
and an AUC of 63.55%, which is comparable with the
fully supervised baseline (f; = 85.85%, TAR = 57.38%,
FAR = 19.46%, 74.31% AUC).

Table VII details frame-level classification results with
SERE dataset across experimental approaches. While the
baseline approach provides better average TAR (59.02%)
and AUC (71.43%) scores, the transfer learning approach
achieves higher f; (80.47%) and lower FAR (19.46%). For
El, the semi-supervised approach has an average better per-
formance in terms of f; score (82.82%), FAR (18.55%),
and ability to distinguish between classes (AUC=81.40%),
while the baseline was the one in which compensation
detection is enhanced (TAR=63.93%). For E2, the trans-
fer learning approach reveals increased f1 (87.27%) and
lower FAR (16.62%), but the semi-supervised approach has
better compensation detection performance (TAR=44.55%)
while the baseline improved AUC (76.72%). For E3,
the baseline has better compensation detection perfor-
mance (TAR=45.41%), while the transfer learning succeeds
in other metrics (f;=87.62, FAR=8.55%, AUC=63.45%).
For E4, the baseline has increased TAR (77.29%) and
AUC (64.41%), and semi-supervised and transfer learning
approaches reveal improved f1 (71.09%) and lower FAR
(22.30%), respectively. For ES, the semi-supervised approach
has a higher f score (77.49%) and lower FAR (21.26%),
whereas the transfer learning approach reveals increased
TAR (70.88%) and AUC (78.99%). Models’ hyperparame-
ters are detailed in Table IV of the supplementary materials.
Table V of the supplementary materials details the FLC
results for all approaches, exercises, and compensatory motion
patterns.
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TABLE VII
RESULTS FOR FRAME-LEVEL COMPENSATION ASSESSMENT ON SERE
TEST SET FOR THE THREE EXPERIMENTAL APPROACHES:

1) BASELINE APPROACH, 2) TRANSFER LEARNING APPROACH,
AND 3) SEMI-SUPERVISED APPROACH. THE RESULTS ARE
REPORTED AS AVERAGE + STANDARD DEVIATION EVALUATED
PER POST-STROKE PATIENT IN THE TEST SET AND ARE AN
AVERAGE ACROSS COMPENSATORY MOTION PATTERNS

Approach
Transfer Learning
0.8045 + 0.0858
0.5049 + 0.1781
0.2325 +0.1450
0.7965 + 0.0623
0.8727 + 0.0754

Exercises Metrics

Baseline
7 0.7736 £ 0.1023
TAR 0.6393 + 0.1449
FAR 0.2903 £ 0.1177
AUC 0.7791 + 0.0825
7 0.8046 + 0.0665

Semi-Supervised
0.8282 + 0.0774
0.4298 + 0.1876
0.1855 + 0.1306
0.8140 + 0.0566
0.8702 £ 0.0764

El

E2 TAR 0.4281 £0.1015  0.4408 +0.0870  0.4455 £ 0.0752
FAR 0.2608 £0.1153  0.1662 4 0.0991  0.1708 £ 0.1100

AUC 0.7672 +0.0382  0.7021 4 0.0360  0.7420 £ 0.0200

h 0.7695 £0.1043  0.8762 + 0.1038  0.7625 £ 0.1277

E3 TAR 0.4541 £0.0806  0.2447 +0.0794  0.2219 £ 0.1220
FAR 0.2932 £0.1279  0.0855 - 0.0810  0.2499 £ 0.1511

AUC 0.6037 £0.0425  0.6345 + 0.0413  0.4870 + 0.0807

h 0.5245 +£0.2806  0.7092 + 0.3347  0.7109 + 0.3477

E4 TAR 0.7729 £ 0.0757  0.3528 +0.0879  0.3856 + 0.0567
FAR 0.5441 £0.2229  0.2230 = 0.1227  0.2604 £ 0.1842

AUC 0.6441 + 0.0828  0.4894 +0.1082  0.4981 £ 0.1360

N 0.7714 £ 0.0681  0.7610 £ 0.0645  0.7749 + 0.0680

ES TAR 0.6564 +0.0996  0.7088 + 0.1070  0.6471 + 0.1047
FAR 0.2211 +£0.0474  0.2656 + 0.0359  0.2126 + 0.0457

AUC 0.7772 £ 0.0665  0.7899 & 0.0603  0.7844 + 0.0655

N 0.7287 £ 0.1244  0.8047 + 0.1328  0.7893 + 0.1394

All Exercises TAR 0.5902 + 0.1005  0.4504 £ 0.1079  0.4260 + 0.1092
FAR 0.3219 £ 0.1262  0.1946 + 0.0967  0.2158 + 0.1243

AUC 0.7143 + 0.0625  0.6825 + 0.0618  0.6651 + 0.0737

TABLE VIII
AVERAGE RESULTS FOR THE ABLATION STUDY EVALUATING THE
IMPACT OF LOWER-QUALITY FLPL IN FLC PERFORMANCE BY USING
A GENERIC PSEUDO-LABELER THRESHOLD (7 = 0.5) AND THE
THRESHOLD FROM [26] (T = 0.36) TO GENERATE FLPL. THE
RESULTS ARE REPORTED AS AVERAGE + STANDARD DEVIATION

Metrics Approach
7=0.5 7=0.36[26] Transfer Learning ~ Semi-Supervised
f 0.7222 £ 0.1516  0.8024 + 0.1494  0.8047 £ 0.1328  0.7893 £ 0.1394

TAR 0.2092 + 0.0581
FAR 0.1845 + 0.0640
AUC 0.5745 + 0.0576

0.2375 + 0.0986
0.1264 + 0.0831
0.6417 + 0.0688

0.4504 £ 0.1079
0.1946 4 0.0967
0.6825 4 0.0618

0.4260 + 0.1092
0.2158 4 0.1243
0.6651 + 0.0737

1) Ablation Study: For further evaluation of the transfer
learning and semi-supervised approaches, we assess the impact
of lower-quality FLPL in the final FLC performance, by using
a generic threshold for FLPL generation (v = 0.5 and,
from [26] t = 0.36). Table VIII, shows average results (across
exercises and compensatory patterns). Detailed results can be
found in the supplementary materials.

2) Computational Latency of Real-Time Assessment: To
assess the feasibility of real-time assessment, we measured
the computational latency.® The pose estimation step averages
71.44ms for a 1920 x 1080 video frame. Preprocessing, which
involves filtering and calculating kinematic variables, takes
0.54ms per frame, and frame classification takes 0.74ms per
frame. This results in an average total inference time of 73ms,
suitable for a real-time application.

D. Qualitative Evaluation of Saliency Maps

Figure 5 shows an example of a motion trial of a patient
describing shoulder compensation and the saliency map of
salient features and frames (Figure 5.a). Shoulder compensa-
tion is visible through joint markers (Figure 5.b) and image

6Laptop with 16 GB RAM, 11th Gen Intel(R) Core(TM) i5-11400H
2.70GHz 6 cores CPU, and NVIDIA Geforce RTX 3060 GPU.

differencing (Figure 5.c). The saliency map captures the
frames where the compensation occurs, along with salient
shoulder elevation angle and projected trajectories in x and
y. We can also observe salient regions where the motion has
ended (false saliency) and regions of compensation that are
not salient (partial saliency).

VI. DISCUSSION
A. Pseudo-Labeler Threshold & Pseudo-Labels Quality

We selected pseudo-labeler thresholds, t, that reflects a
suitable trade-off between TAR and FAR when envisaging the
real-world application of our method. We prioritized minimum
false alarms (FAR<10%) while maintaining a high TAR
(TAR>60%) for compensation detection.

With TULE dataset, we evaluate FLPL quality for the
training set. With SERE, we only evaluate FLPL quality
of the validation set of two post-stroke patients, in the
semi-supervised approach. The frame-level labeling of two
post-stroke patients represented the minimum labeling effort
established to gather sufficient information for fine-tuning
the pseudo-labeler threshold. Therefore, the reported results
of FLPL quality on SERE, in Section V-B, reveal a much
lower TAR (TAR< 60%) and higher FAR (FAR> 10%) than
the FLPL results on TULE (TAR> 90% and FAR< 10%).
Additionally, Figures 1 and 2 of the supplementary materials,
show that the TAR and FAR curves, that support our pseudo-
labeler threshold selection, have a steady progression on TULE
and high variability on SERE.

This suggests two potential factors: suboptimal selection of
the held-out validation set and inaccuracies in the saliency
maps used for FLPL generation. Also, two post-stroke patients
are not representative enough to draw solid conclusions about
FLPL quality for the entire training set, as we might have
performance outliers. In future work, we plan to determine
the minimum number of subjects used for pseudo-labeler
threshold selection, leading to a more reliable threshold.
Additionally, we plan to investigate the effect of fine-tuning
a threshold for each post-stroke patient individually, through
an adaptive FLPL generation approach, on frame-level out-
comes and model adaptability to new patients. Furthermore,
techniques to reduce saliency maps noise and label refinement
might improve pseudo-labels quality.

Recent follow-up work [51] applies our framework and
explores the feasibility of other models for VLC and subse-
quent FLPL generation to train a FLC.

B. Quantitative Evaluation of Frame-Level
Compensatory Motion Assessment

The baseline approach provides better average (across exer-
cises and compensatory patterns) TAR (59.02%) and AUC
(71.43%) scores while the transfer learning approach achieves
higher f1 (80.47%) and lower FAR (19.46%). A higher
J1 score is associated with fewer false alarms. Fine-tuning the
pseudo-labeler t with TULE (transfer learning approach) leads
to a reduced number of false alarms. Conversely, using a FLC
trained with TULE (baseline approach) provided a solution
with an improved ability to distinguish classes (higher AUC)



COIAS et al.: LEARNING FRAME-LEVEL CLASSIFIERS FOR VIDEO-BASED REAL-TIME ASSESSMENT

3343

Normalized gradient values
Kinematic Variables

Fig. 5.

T T T
110 140 170 200 230 frame

Salient kinematic variables - shoulder (1) abduction angle, (2) elevation angle, and projected trajectories in (3) x, (4) y, and (5) z - and

frames for shoulder compensation detection for an example of a motion trial from TULE dataset, E1. a) is the saliency map generated as detailed
in Section IlI-E.2. b) shows the difference of shoulder initial and current positions with joint markers and c) shows the motion the trails of the moving

shoulder through frame accumulation.

and identify compensation with greater precision (higher TAR)
but with more average false alarms, which are reflected in a
lower fi score value. These findings show that our transfer
learning (f1 = 80.47%) and semi-supervised (f; = 78.93%)
approaches generalize better on SERE test set than the baseline
(fi = 72.87%) approach, mainly when we emphasize the
importance of a reduced number of false alarms when applying
these approaches to a VC to support rehabilitation - avoid
offering frequent inaccurate corrective feedback. The positive
results show that the proposed approach has the potential of
simplifying the customization of VCs to new patients and
exercises, reducing efforts in data labeling. We demonstrate
that by producing FLPL from VLL for a target dataset (SERE)
and leveraging the knowledge provided by a source dataset
(TULE) we can achieve real-time (frame-level) compensatory
motion assessment on the target dataset.

Nonetheless, the FLC had lower TAR for E2, E3 and E4 due
to unsatisfactory TAR assessing trunk and head compensation
(Table V in the supplementary materials). The less desirable
results might be due to FLPL noise and saliency maps’ inac-
curacies for FLPL generation. Also, reduced data samples of
different motions impact FLC performance and generalization
to new patients.

From this point forward, although compensation is possible
to access at a frame level, assessing a set of frames instead of
a single frame might enhance our results as it captures motion
transitions over time, leading to reduced noise, improving
accuracy and generalization across motions. On another note,
previous works indicate that training with both clean fully
labeled data and weakly labeled data results in better perfor-
mance and generalization ability instead of only using clean
data for validation [52]. Also, the exploitation of methods for
pseudo-labels refinement might improve the outcomes of the
FLC trained with FLPL [42]. In the future, we aim to explore
other weakly supervised techniques and pipelines an compare
with the one proposed in this paper.

1) Ablation Study: Table VIII, shows the FLC results from
using a generic pseudo-labeler threshold (r = 0.5) and
the threshold from [26] (r = 0.36) against the proposed
transfer learning and semi-supervised approaches. The results
demonstrate that lower quality FLPL strongly impacts FLC
performance in distinguishing classes (lower AUC) and lower

TAR, validating the significance of the applied approaches in
achieving good FLC performance.

C. Qualitative Evaluation of Saliency Maps

Figure 5 shows an example of a motion trial in which a
patient performs compensation. It displays a saliency map
with salient kinematic variables and frames and a sequence
of video frames in which shoulder compensation is observed.
The saliency map provides us with insights about VLC
decision [53]. We determine when compensation occurs and
that shoulder elevation angle and displacements in x and y
are significant for model decision. Additionally, there are
observable inaccuracies in the saliency map (partial and false
saliency), which might impact FLPL quality. Methods to
overcome saliency inaccuracies, such as noise reduction, and
label refinement approaches [39] might improve FLPL quality,
leading to enhanced outcomes in the frame-level classification
step. In future work, we aim to exploit saliency maps and
determine how the information extracted from them can be
useful for therapists, increasing their performance in the clin-
ical decision-making process.

VIlI. CONCLUSION

In this work, we present a novel framework for a weakly
supervised learning approach that learns a frame-level clas-
sifier (FLC) from video-level labels VLL for real-time
compensation assessment on stroke rehabilitation functional
tasks by generating frame-level pseudo-labels (FLPL) to train
a frame-level classifier (FLC). We enable real-time video com-
pensatory motion assessment, allowing virtual coaches (VCs)
to provide patients with feedback at a frame level. Aiming
to explore new motions, we collected a new dataset, the
StrokE Rehab Exercises (SERE), of videos of 20 post-stroke
patients performing five functional tasks for rehabilitation,
which is weakly labeled. With SERE and a previously available
dataset, TULE, we evaluate our method under several experi-
mental approaches: 1) baseline approach, 2) transfer learning
approach, and 3) semi-supervised approach. We evaluate
which achieves better performance on SERE test set, testing
FLC generalization ability to new patients and exercises.

Our transfer learning (f; = 80.47%) and semi-supervised
(f1 = 78.93%) approaches generalize better to the new target
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weakly labeled dataset (SERE) than the baseline approach
(fi = 72.87%) in which the frame-level classifier (FLC)
is trained fully with a source fully labeled dataset (TULE).
This analysis shows the great potential of weakly supervised
motion impairment assessment relying only on video-level
annotations, leveraging saliency maps information, easing the
need for detailed labeling, which is harder to obtain due to
costs, process length, and expert availability.

APPENDIX

More study details are available in the Supplementary
Materials.
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