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Abstract

Background: Early-stage diagnosis of laryngeal cancer significantly improves patient survival and quality of life. However,
the scarcity of specialists in low-resource settings hinders the timely review of flexible nasopharyngoscopy (FNS) videos,
which are essential for accurate triage of at-risk patients.

Objective: We introduce a preliminary Al-based screening framework to address this challenge for the triaging of at-risk
patients in low-resource settings. This formative research addresses multiple challenges common in high-dimensional FNS
videos: (1) selecting clear, informative images; (2) deriving regions within frames that show an anatomical landmark of
interest; and (3) classifying patients into referral grades based on the FNS video frames.

Methods: The system includes an image quality model (IQM) to identify high-quality endoscopic images, which are then fed
into a disease classification model (DCM) trained on efficient convolutional neural network (CNN) modules. To validate our
approach, we curated a real-world dataset comprising 132 patients from an academic tertiary care center in the United States.

Results: Based on this dataset, we demonstrated that the IQM quality frame selection achieved an area under the receiver
operating characteristic curve (AUROC) of 0.895 and an area under the precision-recall curve (AUPRC) of 0.878. When using
all the image frames selected by the IQM, the DCM improved its performance by 38% considering the AUROC (from 0.60 to
0.83) and 8% considering the AUPRC (from 0.84 to 0.91). Through an ablation study, it was demonstrated that a minimum of
50 good-quality image frames was required to achieve the improvements. Additionally, an efficient CNN model can achieve
2.5-times-faster inference time than ResNet50.

Conclusions: This study demonstrated the feasibility of an Al-based screening framework designed for low-resource settings,
showing its capability to triage patients for higher-level care efficiently. This approach promises substantial benefits for health
care accessibility and patient outcomes in regions with limited specialist care in outpatient settings. This research provides
necessary evidence to continue the development of a fully validated screening system for low-resource settings.
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Introduction

Head and neck cancers (HNCs) are the 6th most com-
mon cancer worldwide, with a disproportionate growth in
incidence and mortality in low- and middle-income coun-
tries (LMICs), particularly the West-Pacific and Southeast
Asia regions [1-3]. Among HNCs, laryngeal cancer can be
challenging to diagnose, with nonspecific and mild symptoms
in the early stages. Early-stage diagnosis of laryngeal cancer
is crucial to improve survival and quality of life [4]. Patients
presenting with early-stage cancers have a 60%-90% chance
of cure with local therapy, while those with late-stage cancers
have a significantly reduced opportunity for remission [5,
6]. In addition, patients with advanced cancers have worse
quality of life due to their swallowing, verbal communication,
and breathing dysfunctions [7].

The early detection of laryngeal cancer requires highly
trained health care providers (eg, otolaryngologists) to
visualize and interpret the relevant anatomical structures to
detect anomalies. In addition, a definitive diagnosis requires
downstream histopathological confirmation. Sophisticated
endoscopic equipment, such as flexible nasopharyngoscopy
(FNS), is necessary to examine the upper aerodigestive tract
for abnormalities [8]. Experts who can perform this exami-
nation and interpret the endoscopic videos are limited in
many low- and middle-income countries and in low-resource
settings [9]. Limited access to specialty care in low- and
middle-income countries is apparent for HNCs, with one
study estimating the otolaryngologists-to-population ratio in
some Asian countries to be as low as 1 per 2,146,000 [10].
This results in missed opportunities for early-stage diagnosis
[2]. Technological advancements, particularly in fiberoptic
flexible endoscopy and laser systems, have enabled the shift
of many laryngological procedures from the operating room
to outpatient clinics [11]. In high-volume outpatient settings,
trained non-specialists may benefit from artificial intelligence
(Al)-based clinical decision support systems encapsulating
domain expert knowledge. Clinical decision support systems
(CDSS) with embedded clinical practice guidelines, rules,
and specialist knowledge may more effectively assess and
triage the endoscopies performed by non-specialist health
care workers while having the advantage of portability and
accessibility [12].

Al, specifically machine learning and deep learning, is
increasingly used to detect abnormalities in medical images
and support cancer clinical decision-making, including
screening, diagnosis, and prognosis [13-16]. The early
application of deep learning and machine learning models in
laryngeal cancer management has demonstrated the potential
for detection capabilities comparable to human experts [16,
17]. Deep convolutional neural networks (DCNNs) have been
reported to deal with various data modalities for differ-
ent use cases across the entire care chain [17,18]. These
include real-time lesion detection [19-21] and segmentation
[19,21], as well as screening, diagnosis [22], management,
and prognosis of laryngeal cancers [16].
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Deploying these AI models in the imaging practice
presents several challenges. Imaging modalities use high-
dimensional data. Applications that process single image
frames account for the frames’ pixel resolution and other
features (eg, color channels). This “curse of dimensionality”
effect, confronted by computational AI models, is compoun-
ded when considering video streams that capture many
sequential image frames. For FNS procedures, the frame
count ranges from hundreds to thousands, depending on the
frame capture rate and the procedure’s duration.

Furthermore, the high computational requirements of
performant Al-based models must be considered in low-
resource settings [23-28]. Another concern, especially for
video-based procedures, such as screening for laryngeal
cancer through FNS, is that the frames of interest may only lie
within a range of non-blurry, contiguous frames that capture
the anatomical landmark of interest (ie, the region of interest
within each frame). This adds the challenge of localizing
decision-making to a few clear and relevant regions and
frames that best inform case escalation to more advanced
diagnostic and treatment procedures. A previous study has
proposed manually filtering frames to exclude low-quality
frames (ie, blurry, noisy) before making an assessment [17].
Others have suggested various preprocessing steps to improve
the quality of input images [29-32]; for instance, Huang et al
[31] suggesting using the grayscale adaptive entropy value
for setting the threshold to eliminate unclear images and
recognize vocal fold disorders.

This formative study introduces an Al-based framework
that denoises high-dimensional FNS videos, selects relevant
frames, and suggests care escalation decisions through a
referral grade classification task. To handle noisy real-world
data and select relevant frames, our framework proposes
an image quality module (IQM) that conducts a two-step
procedure of filtering redundant images using a histogram
of gradient-based threshold model and selecting good quality
frames using supervised DCNN models. This IQM is used
in conjunction with a disease classification module (DCM)
that outputs a probability that a case should be escalated to
appropriate downstream test and treat procedures. We aim
to explore the use of efficient DCNN models and validate
whether the proposed framework enhances the performance
of correctly classifying cases to appropriate referral grades
to address the resource constraints envisioned in less well-
resourced settings [26,33].

Methods

Data Acquisition

Our study dataset has 132 full-color FNS videos of varying
lengths collected from laryngoscopy procedures conducted in
the Duke University Health System from December 2019 to
December 2020. The shortest video was 5 seconds, while
the longest was 165 seconds. The video clips were captured
with various orientations, movements, and variable lighting
and contrast conditions during the procedure. Some of these
patients were healthy (no laryngeal pathology), some had
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benign disease processes, and some had laryngeal cancer.
Patients were excluded if the videos were taken post-laryng-
ectomy or if the larynx was not visualized on the video.
Expert clinicians annotated the videos with medical condi-
tions and referral levels for training classification models. The
medical conditions were classified into three referral levels by
a panel of 4 clinicians (two senior and two junior specialists):
Grade 1, no referral required; Grade 2, non-urgent referral or
close follow-up in 3-4 weeks; and Grade 3, urgent referral.

Ethical Considerations

All FNS videos were de-identified before analysis to protect
patient privacy and confidentiality. The study was approved
by the Duke University Health System Institutional Review
Board (No. Pro00106209). The IRB granted a waiver of
informed consent, as the study involved only de-identified
data and posed no risk to participants. No compensation was
provided to participants. No identifiable individuals appear
in any images or materials included in the manuscript or
supplementary files.
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Al-Based Framework for Laryngeal
Cancer Screening

Overview

Figure 1 shows the proposed framework for screening
patients receiving an FNS procedure. The framework includes
two main components: the IQM and the DCM. The IQM
filters low-quality and irrelevant images through a histogram
of gradients-based threshold compared to an indexed 1st
frame of each video. A U-Net model, trained with segmen-
tation masks derived from the open-source benchmark for
automatic glottis segmentation (BAGLS) dataset [30], was
used to generate a labeled dataset for training the IQM to
select relevant frames. The trained IQM network is then used
to further refine the set of high-quality frames. Using selected
frames, we train an efficient Al-based DCM to classify the
referral grade. Figure 1 shows the schematic of the training
and inference process based on the IQM and DCM.

Figure 1. Schematic of the proposed Al-based framework based on the IQM and DCM. Al artificial intelligence; BAGLS: Benchmark for Automatic
Glottis Segmentation; DCM: disease classification module; DHS: Duke University Health System; HOG: histogram of gradients; IQM: image quality

module.
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Image Quality Module

We developed a two-stage IQM based on (1) histogram
of gradients-based similarity filtering, followed by (2) a
U-Net-based DCNN module to identify a set of relevant,
good-quality images. The correlation (ie, by cosine similarity)
of features from a histogram of gradients [34] was used to
evaluate the similarity of contiguous frames with the indexed
frame (which is the first frame of relevance in the FNS
process). After similarity filtering, the U-Net model was
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trained to identify the glottal region using the open-source
BAGLS dataset [30]. Good-quality images are frames where
the glottal area is entirely visible, regardless of the image’s
position and the glottis’s size. We then assigned positive
and negative quality labels to the Duke University Health
System dataset using the U-Net model’s predictions. Negative
labels indicate poor quality due to obscuration and blurring by
natural bodily secretions and movements or irrelevance, that
is, frames not of the glottal region.
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Disease Classification Module

The 132 unique patient videos were filtered into “good” and
“poor” quality frames with the IQM. Sixteen videos were
excluded due to insufficient good-quality image frames. The
remaining 116 videos were used to train the DCM model
using an 80-20 patient-level train-test split to avoid data
leakage. The DCM classifies patients into binary referral
grades: non-referral (Grade 1) versus referral (Grades 2 to
3).

To develop the DCM, we compared a baseline CNN
model [35], a ResNet50-based model [36], a MobileNetV2-
based model [33], and a GhostNet-based model [26] across
six validation metrics. The baseline CNN model has six
convolutional layers with maximum pooling and batch
normalization, adding dropout [37] to the last two layers.
ResNet50 employs deep residual learning with skip connec-
tions, enabling training of very deep neural networks without
the challenge of vanishing gradients [38]. MobileNetV2
employs inverted residuals and depthwise separable convo-
lutions for more efficient performance, intended for mobile
and embedded devices. Lastly, GhostNet further enhances
the efficiency of computations by generating more feature
maps from efficient operations; this results in an even more
efficient DCNN suitable for lightweight applications.

Model Evaluation

The classification performance for IQM at the image level
and DCM at the video (ie, patient) level was evaluated across
six validation metrics. The train-test split was determined at
the patient level to avoid data leakage. For the patient-level
classification, we utilized the concept of bootstrap aggrega-
tion to evaluate the average classification probability of image
frames within the same video. The primary metrics that

Table 1. Summary of cohorts from the BAGLS? dataset and our dataset.
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describe the quality of the model predictions are accu-
racy, weighted F1 score, area under the receiver operating
characteristic (AUROC), and area under the precision-recall
curve (AUPRC). The secondary metrics that describe the
efficiency of the models are the total number of floating-point
operations in the order of 10° (GFLOPs) [39] and inference
times. These outcome metrics describe the efficiency and
effectiveness of the algorithm for model training, validation,
and inference [23,26,28]. In addition, to address potential
data imbalance that may hinder the classification model’s
ability to learn minor class patterns, the final selected model
was further evaluated with training sample augmentation, and
binary focal cross entropy loss [40]. To assess the impact of
the IQM in the overall framework, we performed an ablation
study [41] in which the DCM classifier was evaluated both
with and without IQM-based preprocessing. Specifically, we
trained and tested the DCM using input sequences that had
undergone the IQM step. In addition, we systematically
varied the number of high-quality frames provided to the
DCM to examine the effect of input frame count on the
classification performance.

Results

Comparison of the BAGLS Dataset and
the Study Dataset

Table 1 summarizes the BAGLS and the study dataset. The
BAGLS dataset has approximately 60% healthy patients,
whereas our dataset has 30% healthy patients. The number
of frames derived from the patient-level videos is roughly the
same ratio. We used the entire BAGLS cohort, comprising
59,250 frames, to label informative frames. The raw dataset
comprised 190,978 images derived from 132 patients.

Study dataset
Disorder Status Cohort size (%) Patient count (%) Frame count (%) Cobhort size
(%)
Healthy (Grade 1) 35,400 (59.7) 382 (59.7) 49,282 (25.8) 40 (30.3)
Unhealthy (Grade 2/3) 23,850 (40.3) 258 (40.3) 141,696 (74.2) 92 (69.7)
Total 59,250 (100) 640 (100) 190,978 (100) 132 (100)

4BAGLS: Benchmark for Automatic Glottis Segmentation.

Performance of the Image Quality
Module

Table 2 compares the test performance of the baseline CNN
model [35], ResNet50-based model [36], and GhostNet-based
model [26] for the IQM. Although the ResNet50-based model
had the best accuracy of 0.833, the best F1 score of 0.832,
and the best AUPRC of 0.957, the GhostNet model had
comparable performance with the ResNet50 model and the
best AUROC score of 0.895 with the fewest GFLOPs for
computation.

https://formative jmir.org/2025/1/e66110

The IQM model generated 20,040 good-quality frames
from 116 patients in the study dataset cohort for the DCM
training and test sets. Of these, 34/116 patients (29.3%) were
classified as having Grade 1 disease, while the remainder
82/116 (70.7%) were classified as having Grade 2/3 disease.
GhostNet resulted in the highest AUC-ROC and AUPRC,
while being the most efficient, that is, the lowest GFLOPs.
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Table 2. Comparison of the performance of the different deep convolutional neural network architectures used in the image quality module (IQM).

GFLOPs
Model Accuracy F1 score AUROC? AUPRCP ¢
Baseline convolutional neural 0.699 0.673 0.724 0.729 50.0
network
ResNet50 0.833 0.832 0.746 0.957 245.0
GhostNet 0.829 0.827 0.895 0.878 8.7

2AUROC: area under the receiver operating characteristic curve.
PAUPRC: Area under the precision-recall curve.
CGFLOP: Number of floating-point operations in the order of 10°.

Performance of the Disease
Classification Module
The ResNet50 and GhostNet DCM achieved accuracy,

optimal Fl-scores, and AUPRC exceeding 80% at the
video-level classification (Table 3). The ResNet50 model’s

inference time was 20.44 s, nearly 2.5 times slower than
that of GhostNet (7.95 s per batch). Using an inference
batch size of 64, 224-pixel-sized images (ie, height and
width), ResNet50 had 245.0 GFLOPs, 40 times more than
the GhostNet model with 8.7 GFLOPs.

Table 3. Performance comparison of different disease classification module (DCM) classifiers at the patient level.

Model Accuracy F1 score AUROC? AUPRCP Inference time (s) GFLOPs®
Convolutional neural  0.652 0.624 0.595 0.805 8.09 50.0
network

ResNet50 0.739 0.697 0.667 0.850 16.71 245.0
MobileNetV2 0.696 0.629 0611 0.833 8.62 20.3
GhostNet 0.870 0.863 0.833 0912 7.95 8.7

2AUROC: area under the receiver operating characteristic curve.
DAUPRC: Area under the precision-recall curve.
¢GFLOP: Number of floating-point operations in the order of 10°.

Ablation Study

As the video-level prediction is based on bootstrap aggre-
gation or bagging [42], the number of frames available to
generate disease predictions (post-IQM) will be sensitive to
the number of good-quality frames available per patient.

Table 4 shows the sensitivity of predictive quality across
the number of high-quality frames. When using all the image

frames selected by the IQM, the DCM improved its perform-
ance by 38% considering the AUROC (from 0.60 to 0.83) and
8% considering the AUPRC (from 0.84 to 0.91). Our results
showed that 50 good-quality frames per patient video were
required to outperform the model’s base case without IQM.

Table 4. Ablation study results show GhostNet-based disease classification module performance at varying numbers (n) of good-quality frames per

patient selected by the image quality module (IQM).

Accuracy F1 score AUROC? AUPRCP

Without IQM

Original number 0.704 0.633 0.600 0.840
With IQM, n

10 0.676 0.545 0.500 0.839

30 0.622 0.625 0.698 0.877

50 0.784 0.770 0.710 0.884

No limit® 0.870 0.863 0.833 0912

4AUROC: area under the receiver operating characteristic curve.
YAUPRC: area under the precision-recall curve.
CAll frames classified as good quality by the IQM are used.
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Discussion

Principal Findings

This study showed the feasibility of an efficient Al-based
screening framework incorporating an image quality filtering
module to select high-quality and relevant image frames
from FNS videos. Our ablation study demonstrated that the
integration of IQM resulted in higher-quality DCM predic-
tions across all the performance metrics at the patient level.
Using a minimum of 50 high-quality frames, the DCM
showed better predictive performance across all the metrics
compared to the base model, where all the image frames
were used without the IQM. Addressing the challenges of
selecting informative image frames has been identified as
a key impediment in developing laryngeal cancer screening
algorithms [17]. Our formative research highlights the IQM’s
potential to enhance training and inference through effective
frame selection.

We leveraged the efficient GhostNet architecture for
our IQM and DCM as an alternative to the more resource-
intensive ResNet50 model. GhostNet-based models have
demonstrated performance comparable to those using less
efficient architectures, such as ResNet50 [9]. In our study,
the GhostNet-based DCM produced the best model across
the validation metrics. The model achieved an accuracy of
87% and a high AUROC (0.833) and AUPRC (0.912) for
classification at the patient level, with the optimal F1-score
of 0.863 (Table 3). This level of performance, combined with
the model’s efficiency, makes it more suitable for integration
into low-cost FNS facilities and screening equipment.

Our dataset, comprising 132 patients with 190,978 frames,
is smaller than the dataset in a prior study [21], which trained
and validated a segmentation model on data from 557 patients
with 3933 frames and tested on two additional datasets.
Nonetheless, limited patient datasets are common in this field.
A related study [43] evaluated a CNN model on 100 patients
with 170 images, while another study [44] used data from
just 33 patients with 1320 images to assess machine learning
algorithms.

Current state-of-the-art computer vision models use
transformer-based Al models to classify images, segment
pixels, or localize objects within images [45]. While

Lam et al

achieving high performance scores on established bench-
marks, these models are computationally costly, with
computational workloads exceeding those of the ResNets
models [46-48]. Studies that compared traditional DCNNSs,
like those explored in this study, with transformer-based
models highlighted greater computational costs and depend-
ence on large training datasets [45,49,50]. Given these
limitations, particularly in the context of deployment in
low-resource clinical settings, there remains a strong case
for exploring simpler, more efficient architectures. This
study focused on efficient DCNNs to develop and validate
the Al-based IQM-DCM screening framework for laryng-
eal cancer, emphasizing practical feasibility and predictive
performance.

While our FNS videos reflect a realistic clinical setting,
they may not fully represent the constraints of low-resource
environments. This study serves as a preliminary step towards
demonstrating the feasibility of the Al-based IQM-DCM
screening framework. Acknowledging the limitations of our
dataset, we are actively expanding data collection efforts
with multiple partners to further enhance the framework’s
robustness and generalizability across diverse low-resourced
clinical contexts [16,51]. Recent developments in efficient
transformer network models will also be evaluated further to
refine the dual-stage screening framework [52,53]. Cost-
effectiveness analysis and implementation studies will also
be conducted to achieve the envisioned system, which can
support referral decisions in low-resource settings [16].

Conclusion

This study demonstrates the potential of the IQM-DCM
framework to be embedded in an Al-based system to
support early screening and triaging of patients at risk
of laryngeal cancer. This preliminary work provides early
evidence supporting the feasibility of this approach. Notably,
the IQM-DCM framework, leveraged on lightweight neural
network architectures, is shown to outperform conventional
CNN models across various effectiveness and efficiency
metrics. Future work will expand the dataset, incorporate
recent advances in efficient network architectures, and
validate the framework across more diverse populations to
enhance its generalizability and real-world clinical applicabil-

ity.
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