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Abstract. A growing research explores the usage of AI explana-
tions on user’s decision phases for human-AI collaborative decision-
making. However, previous studies found the issues of overreliance
on ‘wrong’ AI outputs. In this paper, we propose interactive example-
based explanations to improve health professionals’ onboarding with
AI for their better reliance on AI during AI-assisted decision-making.
We implemented an AI-based decision support system that utilizes
a neural network to assess the quality of post-stroke survivors’ ex-
ercises and interactive example-based explanations that systemati-
cally surface the nearest neighborhoods of a test/task sample from
the training set of the AI model to assist users’ onboarding with the
AI model. To investigate the effect of interactive example-based ex-
planations, we conducted a study with domain experts, health pro-
fessionals to evaluate their performance and reliance on AI. Our
interactive example-based explanations during onboarding assisted
health professionals in having a better reliance on AI and making a
2.7% higher ratio of making ‘right’ decisions and 0.7% lower ratio
of ‘wrong’ decisions than providing only feature-based explanations
during the decision-support phase. Our study discusses new chal-
lenges of assisting user’s onboarding with AI for human-AI collabo-
rative decision-making.

1 Introduction
Advanced artificial intelligence (AI) has been increasingly being ex-
plored and considered to provide data-driven insights for improving
various decision-making tasks (e.g. social services [44] and health
[5, 10, 24]). Researchers have investigated how to effectively form
human-AI teams [10, 38, 24] instead of applying a fully autonomous
approach for AI systems in high-stake contexts. However, it remains
challenging to explain the rationale of an AI output [28, 35, 10], build
an appropriate trust on AI [3, 43, 8, 7], and integrate these AI systems
in practice [37, 16, 17].

To address these challenges of forming effective human-AI teams,
a growing body of research has explored various explainable AI tech-
niques [26, 34, 42, 20] and the interactive visualization techniques of
high-dimensional embedding data [6, 27, 1, 4, 40]. In addition, AI
and HCI researchers have conducted studies [25, 11, 10, 5, 24, 42,
15] with the stakeholders to understand what they need and explore
how they can effectively interact with AI explanations in specific ap-
plications. Some studies have shown the utility of AI explanations
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and interactive visualizations [10, 18, 43] for human-AI teams with
improved accuracy. However, previous studies also discussed an is-
sue and harmful effect of using AI explanations to include user’s
overreliance on AI even when it is wrong [8, 3, 7, 21]. In addition,
most studies have focused on utilizing AI explanations at decision
support phases [18, 3, 18, 7, 43, 24]. There has been limited under-
standing of how AI explanations can be used to assist user’s onboard-
ing phases when an AI system has been first introduced to a user [11].

In this work, we focused on the context of a clinical decision-
making task (i.e. physical stroke rehabilitation assessment) and in-
vestigated how interactive example-based can be used to support
user’s onboarding with AI for human-AI collaborative decision-
making. To ground this research, we first interviewed domain experts
(i.e. health professionals) to rank and discuss three widely used AI
explanations to support their onboarding with AI. Building upon the
findings from the interviews and the previous research of human-
AI interaction [32, 2, 11], we created an AI-based decision support
system that leverages a neural network to assess the quality of post-
stroke survivor’s exercises and provides interactive example-based
explanations to assist user’s onboarding with AI and feature-based
explanations to support a user’s decision-making task.

Given a new patient’s exercise motion, the system provides inter-
active example-based explanations (Figure 1b) that identify the near-
est k-neighbourhoods of the new data from the training set of the AI
model and visualize their embedding spaces along with AI outputs
and ground truth labels. As interactive example-based explanations
allow users to review how data has been represented and how an
AI model performed on the nearest neighborhoods, the interactive
example-based explanations can potentially assist users’ onboard-
ing with AI for their better reliance on AI during their AI-assisted
decision-making.

To evaluate the effect of interactive example-based explanations,
we conducted an experiment with sixteen domain experts, health pro-
fessionals (i.e. therapists) and analyzed their reliance on AI during
their human-AI collaborative decision-making. The results showed
that user’s onboarding phases with our interactive example-based ex-
planations assisted therapists to have a better-calibrated reliance on
AI and making a 2.7% higher ratio of making ‘right’ decisions and
0.7% lower ratio of ‘wrong’ decisions than providing only feature-
based explanations during the decision-support phase.

Our findings suggest the potential of interactive example-based
explanations to support user’s onboarding with AI and point to



challenges on how AI explanations can be utilized for onboarding
users with an AI model and more effective human-AI collaborative
decision-making in high-stake domains (e.g. health) [11, 24, 10, 5].

2 Related Work
We describe prior work at the intersection of explainable AI and visu-
alization techniques and empirical studies of human-AI collaborative
decision-making.

2.1 Explainable AI & Visualization Techniques

Researchers have explored human-AI collaborative decision-making,
in which the AI system provides users data-driven insights on a
decision-making task to assist and improve human’s final decision-
making [19, 11, 24, 44, 5]. However, users have difficulty with un-
derstanding why the AI system with a complex algorithm provides
a certain outcome [28, 35]. They may resist and abandon the us-
age of these systems in practice [16]. To this end, researchers have
explored diverse explainable AI (XAI) and visualization techniques
to improve user’s understanding of how AI/ML-based models reach
their outcomes [26, 20, 6].

XAI techniques can be categorized into inherently interpretable
models, such as linear regression models, rule-based models, and de-
cision trees, and post-hoc methods that generate an approximate of
the model’s decision logic by producing understandable representa-
tion, such as relevant examples or feature importance scores [20]. In
this work, we focus on exploring two widely used post-hoc XAI tech-
niques: an important feature explanation and an example-based ex-
planation. Important feature explanations compute the contributions
of input features to a model output and present the list of identified
features or highlighted pixels [20, 12, 36]. Example-based explana-
tions identify and present samples that are the most relevant and in-
fluential to an AI output [20, 12, 9].

In addition, various techniques have been proposed to visualize
and interpret high-dimensional input or representations of AI/ML
models [27]. Specifically, researchers have projected the high-
dimensional input data or embedding representations of AI/ML mod-
els into two or three reduced dimensions using dimensional reduction
techniques (e.g. principal component analysis) [1, 4, 40] to visualize
reduced dimensions on an interactive tool [6].

2.2 Studies of Human-AI Collaborative Decision
Making

For human-AI collaborative decision-making, researchers have sug-
gested engaging with the stakeholders, understanding what users
need, and exploring how they can effectively interact with AI expla-
nations in specific applications [11, 10, 5, 24] In addition, there have
been increasing studies to explore the effect of AI explanations for
various decision-making tasks (e.g. deception detection [18], cancer
diagnosis [10], and stroke rehabilitation assessment [24]). Some of
the previous studies discussed that providing explanations could lead
to a harmful effect of user’s over-reliance on the system [8, 3, 21, 3].

For the issue of overreliance on AI, researchers have conducted
various empirical studies to understand the effect of strategies or fac-
tors (e.g. cognitive forcing intervention [7] or presenting AI expla-
nations at the decision-making phase [21, 41]. For instance, Buc-
cinca et al. [7] discussed the cognitive forcing intervention, such
as slowing down the process and asking the person to make a de-
cision before seeing the AI recommendation. Lee and Chew [21]

demonstrated the potential of counterfactual explanations to increase
users’ analytical reviews on AI outputs and reduce their overreliance
on AI during human-AI collaborative decision-making. However, a
growing research work has mostly studied the issue of AI overre-
liance by presenting AI explanations at the decision support phase
[18, 3, 18, 7, 43]. We have a limited understanding of how we can
effectively support a user’s onboarding phase with AI [11] when an
AI system has been first introduced to a user for the user’s trust and
reliance on AI.

In this work, we focused on the context of the AI-assisted clinical
decision-making task (i.e. physical stroke rehabilitation assessment)
and contributed to exploring the effect of an interactive AI explana-
tion to support user’s onboarding with AI for human-AI collaborative
decision-making. To this end, we engaged with the domain experts
to seek their opinions on how AI explanations can be used to support
user’s onboarding. In addition, compared to other works that utilize a
mock-up decision support system that operates with the wizard-of-oz
approach [8] or a simulated AI model [7, 41], this work utilized the
dataset of 15 post-stroke survivors to implement AI model outputs
and explanations and conducted an experiment with domain experts.

3 Study Designs

In this work, we explore the effect of interactive AI explanations
to support users’ onboarding with AI for human-AI collaborative
decision-making. Building upon increasing research on explainable
AI techniques for AI-assisted decision making [8, 7, 43, 10, 24] and
previous research work that describes the importance of communi-
cating the strength of AI for onboarding with AI [11], we focused on
studying how an explainable AI technique can be used to introduce
the strength of AI for user’s onboarding with AI and understanding
its effect during human-AI collaborative decision making (i.e. phys-
ical stroke rehabilitation assessment).

To investigate this research question, we first conducted semi-
structured interviews with domain experts (i.e. therapists) to probe
their opinions on how an explainable AI technique can be used to
communicate the strengths and limitations of AI for onboarding.
Building upon the findings from the interviews, we created an inter-
active example-based explanation to support user’s onboarding with
an AI-based system. We then experimented with therapists to exam-
ine the effect of an interactive example-based explanation for their
trust and reliance on AI during decision-making tasks of assessing
post-stroke survivors’ quality of motion. The study materials and
procedures were approved by the Institutional Review Board (IRB).

3.1 Study Context

This work focuses on the context of a clinical decision-making task
of assessing the quality of motion of post-stroke survivors. We built
upon the previous research on AI-assisted decision-making on stroke
rehabilitation assessment [23] to specify an upper limb exercise and
performance components of rehabilitation assessment. For an exer-
cise, a post-stroke survivor has to raise the survivor’s wrist to the
mouth as if drinking water. The performance components of reha-
bilitation assessment include ‘Range of Motion (ROM)’ that checks
how closely a post-stroke survivor achieves the target position of an
exercise and ‘Compensation’ that checks whether a post-stroke sur-
vivor involves any unnecessary, compensatory joint movements to
perform an exercise (e.g. leaning to the side) [23].



3.2 Interviews about Onboarding with AI

To understand how an explainable AI technique can be used as an
onboarding material to communicate the strengths and limitations
of AI, we conducted semi-structured interviews with ten therapists,
who have experience with managing stroke rehabilitation (Appendix.
Table 3). We recruited the participants through advertisements sent
to the hospital staff, the mailing lists, and the contacts of the research
team.

For the interviews, we first introduced an AI-based system and
three AI explanations for physical stroke rehabilitation assessment
and asked the participants to rank which AI explanations are useful to
support onboarding (i.e. when a user first reviews and interacts with
AI to understand the strength of AI) and decision support (i.e. when
a user review AI outputs for a decision-making task). All interview
sessions were conducted remotely on a video platform for 60 to 80
minutes.

To introduce an AI-based system AI explanations, we utilized ex-
isting guidelines for human-AI interaction [2, 32, 11], an AI model
card [31], and tutorials of AI explanations [20] to create introduction
materials of an AI-based decision support system for physical stroke
rehabilitation assessment. Also, we had discussions with domain ex-
perts in stroke rehabilitation to refine our introduction materials be-
fore conducting the interviews.

For onboarding, therapists ranked an example-based explana-
tion (36.7%) as the most useful, a counterfactual explanation
(35.0%) as the second most useful, and a feature importance expla-
nation (28.3%) as the third most useful. For decision support, thera-
pists ranked an example-based explanation and a feature importance
explanation as equally useful (33.9%) and a counterfactual expla-
nation (32.2%) as the third most useful. For onboarding, therapists
described that they want to “briefly validate the correctness of AI
outputs to develop a trust with AI”. An example-based explanation
is useful for onboarding as “reviewing a pool of similar samples”
is “easier to interpret than others”. In addition, therapists suggested
presenting benchmarkable information to understand the strength of
an AI model, such as characterizing the conditions of similar post-
stroke survivors, how much therapists had agreed on assessment, and
how well the AI model can replicate therapist’s assessment scores.

4 System Implementations
Informed by the findings of the interviews with domain experts, we
created an AI-based decision support system (Figure 1). Given a
video of a post-stroke survivor’s rehabilitation exercise, this system
utilizes a neural network model to classify the quality of motion. In
addition, the system includes an interactive example-based explana-
tion (Figure 1b) for facilitating the user’s onboarding with the AI
system and an important feature explanation (Figure 1c) for assist-
ing the user’s decision-making on rehabilitation assessment. In the
following section, we described the dataset of our study and the im-
plementations of an AI model, AI explanations, and the interface in
detail.

4.1 Dataset

This work utilizes the dataset of a “Bring a cup to the mouth” upper-
limb exercise from 15 post-stroke survivors with diverse status of
functional abilities [22]. The dataset contains (1) 300 videos of 15
post-stroke survivors, who performed ten trials of the exercise using
their unaffected and affected side by stroke, (2) estimated joint posi-
tions of their exercise motions using a Kinect sensor v2, and (3) the

annotations by the expert therapist, who utilized clinically validated
assessment tool [13] to check the status of post-stroke survivors and
another therapist, who had not had any interactions with 15 post-
stroke survivors. For the annotations on performance components of
rehabilitation assessment, therapists individually watched the videos
of post-stroke survivors without reviewing any AI outputs.

4.2 AI Model

Following the previous research on rehabilitation assessment [22],
we processed the estimated joint positions of post-stroke survivors’
exercises to extract various kinematic features. The kinematic fea-
tures of the ‘Range of Motion’ (ROM) include joint angles, such as
elbow flexion, shoulder flexion, and elbow extension, and normalized
relative trajectory (i.e. the Euclidean distance between two joints -
head and wrist; head and elbow), and the normalized trajectory dis-
tance (i.e. the absolute distance between two joints - head and wrist,
shoulder and wrist) in the x, y, and z coordinates [22]. The features
of the ‘Compensation’ include the normalized trajectories, which in-
dicate the distances between joint positions of the head, spine, and
shoulder in the x, y, and z coordinates from the initial to the current
frame over the entire exercise motion [22].

Given the extracted kinematic features and labels of post-stroke
survivors’ exercises, we implemented a feed-forward neural network
(NN) model to classify the quality of post-stroke survivors’ motion
using Pytorch libraries [33], following its outperformance shown in
the previous research [22]. For the labels, we utilized the labels by the
expert therapist, who conducted the clinically validated assessment
test. We grid-searched various architectures (i.e. one to three layers
with 32, 64, 128, 256, and 512 hidden units) and different learning
rates (i.e. 0.0001, 0.0005, 0.0001, 0.005, 0.001) while training a feed-
forward NN model with cross-entropy loss and the mini-batch size
of 1 and epoch of 4.

For training and evaluating the model, we utilized the leave-one-
subject-out cross-validation, where we trained the model with data
from all post-stroke survivors except one post-stroke survivor and
tested the model with data from the held-out post-stroke survivor.
The final model architectures and learning rates are three layers with
256 hidden units and 0.005 of the learning rate for the ROM and three
layers with 64 hidden units and 0.005 of the learning rate. The mod-
els achieved 82% F1-score and 77% F1-score to replicate therapists’
assessment on ‘ROM’ and ‘Compensation’ components respectively.

4.3 AI Explanations and Interface

Our interactive system interface presents an AI prediction on perfor-
mance components of rehabilitation assessment along with its con-
fidence score [2]. In addition, our system provides 1) interactive
example-based explanations for improving users’ onboarding with
AI and 2) feature-based explanations for assisting their decision-
making. For the implementation of our system interface, we utilized
the python, flask [14], HTML, and javascript libraries.

4.3.1 Interactive Example-based Explanation for
Onboarding

Our interactive example-based explanation (Figure 1b) aims to as-
sist users in onboarding with AI and developing initial trust with AI
by reviewing similar cases of a test/query input. Specifically, the in-
teractive example-based explanation shows the global views of the



(a)

(b) (c)

Figure 1: The AI-based decision support system for physical stroke rehabilitation assessment. This system presents (a) the video of a post-stroke
survivor’s exercise, (b) interactive example-based explanations along with embedding visualization to assist user’s onboarding with AI, and
(c) an important feature explanation that compares a post-stroke survivor’s unaffected and affected sides using the top three most important
features to assist rehabilitation assessment



embedding spaces of the entire data [6] and the local views of the em-
bedding spaces of k-nearest neighbors [6] of a case to be reviewed. In
addition, our interactive example-based explanation shows common
(green color) and unique (purple color) neighbor lists of embedding
data from two performance components (‘Range of Motion’ - ROM
and ‘Compensation’ - COMP).

A user can specify the embedding space to review and the num-
ber of k-nearest neighbors. A user can click embedding data to re-
view the image of a neighbor post-stroke survivor. A user can hover
around embedding data to quickly review the benchmarkable infor-
mation of a neighbor on a tooltip (Figure 1b). The benchmarkable
information includes the status of a neighboring post-stroke survivor,
the performance of the AI model, and the therapists’ agreement level
on selected neighboring post-stroke survivor’s data.

We hypothesize that by reviewing AI performance and therapists’
agreement on nearest neighbor data, a user can have a better under-
standing of the strength of AI and build a better calibrated initial trust
in AI for effective human-AI collaborative decision-making.

For an example-based explanation, we explored the representation
of input and intermediate layers of the feed-forward NN models and
explored principal component analysis (PCA) [1], Uniform Mani-
fold Approximation and Projection (UMAP) [4], and t-distributed
Stochastic Neighbor Embedding (t-SNE) [40] to compute embed-
ding data while implementing a K-nearest neighbor classifier over
various sizes of k (i.e. 5, 10, 15, 20, 25, 30) with cosine or Euclidean
distance [39]. Based on the experimental results, we utilized the de-
fault value of k as 5, the Euclidean distance metric, UMAP, and the
first input layers of the feed-forward Neural network models as em-
bedding data.

For presenting embedding data, we utilized the Embedding Com-
parator [6] and revised it to present images of similar data points
when a user clicks a data point and show benchmarkable informa-
tion on a tooltip when a user hovers a data point.

4.3.2 Feature-based Explanation for Decision-Support

Among various types of AI explanations, we built upon the previous
research that describes therapists’ preferences in reviewing feature-
based explanations on rehabilitation assessment tasks [23] and the
findings of our interviews and utilized a feature-based explanation to
assist users’ decision-making tasks.

For a feature-based explanation (Figure 1c), we first identify user-
specific important features of rehabilitation assessment using the
trained feed-forward neural network models and the SHAP library
[30]. We then utilized only the top three features to avoid overwhelm-
ing users with a list of features [2]. Following the practices of ther-
apists [23], we utilized a radar chart to compare these features on
post-stroke survivors’ unaffected and affected sides by stroke to as-
sist users’ decision-making tasks.

5 Experiments

Given the issue of overreliance on AI [43, 19, 21], this work hy-
pothesizes that our interactive example-based explanation will en-
able users to understand the strengths and limitations of an AI model
and develop a better-calibrated trust and reliance on AI for human-AI
collaborative decision making.

We specified two conditions (“Features” without interactive
example-based explanation and “Examples + Features”) and con-
ducted a with-in subject study with sixteen health professionals to

explore the effectiveness of our interactive example-based explana-
tions on users’ AI-assisted decision-making.

• “Features”: the baseline, controlled condition of an AI-based
decision support system that presents videos of post-stroke sur-
vivors’ exercises (Figure 1a), AI predicted assessment scores, and
an important feature explanation (Figure 1c) without interactive
example-based explanations

• “Examples + Features”: the experimental condition of an AI-
based decision support system that includes the same functional-
ities of the baseline condition along with an additional, interac-
tive example-based explanation for onboarding with the AI model
(Figure 1b)

As previous work describes therapists’ preferences to review
feature-based explanations and find evidence [23], we included the
feature-based explanations by default to confirm therapists’ hypo-
thetical assessment with an AI explanation [42]. In addition, an in-
teractive example-based explanation is included in the experimental
condition to support user’s onboarding with AI. In our study, we re-
ferred to two systems as “Condition A” and “Condition B” to avoid
biasing participants. We referred to these conditions as “Features”
and “Examples + Features” for clarity throughout the paper.

For the study, we recruited 16 health professionals, therapists, who
have experience with stroke rehabilitation through an advertisement
sent to the hospital staff, the mailing list, and the contacts of the
research team. We described the detailed demographics in the Ap-
pendix. Table 4.

5.1 Protocol

We conducted a within-subject experiment to understand the effect
of interactive example-based explanations on users’ reliance on AI
during human-AI collaborative decision-making. After a participant
completed the informed consent form, each participant was randomly
assigned to (i) either first use the AI with only important feature ex-
planations (Condition A - ‘Features’) without interactive AI expla-
nations and then AI with interactive example-based explanations for
onboarding and important feature explanations (Condition B - ‘Ex-
amples + Features’) or vice-versa.

On each condition, the participants conducted two sub-tasks of
completing the rehabilitation assessment on their assigned cases (i)
without reviewing AI outputs and explanations (Figure 1a) and (ii)
after reviewing AI outputs and explanations. In each condition, the
participant conducted eight initial assessments and eight final assess-
ments on post-stroke survivors’ exercises after reviewing AI outputs
and explanations. Among eight assigned cases, we included the cases
of 4 ‘right’ AI outputs and 4 ‘wrong’ AI outputs by the trained feed-
forward neural network models to investigate the effect of AI expla-
nations on user’s overreliance on ‘wrong’ AI outputs.

We counterbalanced the assigned cases of each condition and ran-
domized the order of the two conditions and the presentations of
assigned cases of post-stroke survivors. All participants received a
fixed compensation for their participation based on the rate recom-
mended by the domain experts.

5.2 Evaluation Metrics

We built upon previous studies on human-AI collaborative decision
making [19, 10, 21] and utilized the following evaluation metrics:
1) performance, 2) ratio of ‘right’ and ‘wrong’ decisions, and 3) the
duration of decision-making tasks.



1) Performance: We utilized the annotations of a therapist, who
conducted the clinically validated functional assessment test, as
ground truth scores and measured the participants’ performance on
decision-making tasks before and after reviewing AI outputs and ex-
planations [19].

2) Ratio of ‘Right’ and ‘Wrong’ Decisions: We computed the
ratio of ‘right’ and ‘wrong’ decisions by the participants using two
variants of the system: "Features" without interactive example-based
explanations and "Examples + Features". In addition, we further an-
alyzed the ratio of (1) agreeing with ‘right’ AI outputs, (2) rejecting
‘wrong’ AI outputs, (3) agreeing with ‘wrong’ AI outputs (i.e. over-
reliance), and (4) rejecting ‘right’ AI outputs (i.e. underreliance).

3) Duration of Decision-Making: Our systems computed the es-
timated duration of decision-making by measuring the time from re-
viewing a video for the assessment to submit an assessment score.

6 Results and Discussion

We present the results of our evaluation metrics (i.e. performance,
ratio of ‘right’ and ‘wrong’ decisions, and duration of decision mak-
ing). We refer to the decision-making of participants without review-
ing AI outputs and explanations as “Human” and with reviewing AI
outputs and explanations as “Human + AI”. In addition, we refer to
Condition A as “Features” where participants interact with the AI
system with only important feature explanations, and Condition B as
“Examples + Features” where participants interact with the interac-
tive AI system with example-based explanations, the visualizations
of embeddings, and important feature explanations.

6.1 Performance

Table 1 summarizes the average performance (i.e. F1-score) of reha-
bilitation assessment tasks without AI outputs (‘Human’) and with
AI outputs (‘Human + AI’) by participants.

Table 1: Performance of rehabilitation assessment tasks using AI with
only Features (Condition A) and AI with Examples + Features (Con-
dition B)

ConditionA
Features

ConditionB
Examples + Features

Human Human + AI Human Human + AI

All 81 78
(-3) 86 84

(-2)

Right
AIOutputs 84 88

(+4) 87 88
(+1)

Wrong
AIOutputs 79 68

(-11) 86 79
(-7)

Participants using ‘Examples + Features’ had lower overre-
liance on AI with lower performance degradation than those using
only ‘Features’. Using all cases, participants had lower performance
degradation (2%) using ‘Examples + Features’ than ’Features’ (3%).
When ‘right’ AI outputs were presented, participants’ Human + AI
performances were increased: 1% performance increment using ‘Ex-
amples + Features’ and 4% performance increment using ‘Features’.
When ‘wrong’ AI outputs were presented, participants’ Human +
AI performances were decreased. Specifically, the participants using
‘Examples + Features’ (7%, p < 0.1) had lower performance decre-
ment than participants using ‘Features’ (11%, p < 0.05).

6.2 ‘Right’ and ‘Wrong’ Decisions

Table 2 summarizes the ratios of ‘right’ and ‘wrong’ decisions on re-
habilitation assessment tasks with AI outputs (‘Human + AI’) by par-
ticipants. In addition, Table 2 describes the detailed ratios of ‘right’
decisions (i.e. agreeing with ‘right’ AI outputs and rejecting ‘wrong’
AI outputs) and ‘wrong’ decisions (i.e. agreeing with ‘wrong’ AI
outputs and rejecting ‘right’ AI outputs).
Table 2: The ratios and detailed analysis of ‘right’ and ‘wrong’ deci-
sions by participants using AI with only Features (Condition A) and
AI with Examples + Features (Condition B)

Condition A
Features

ConditionB
Examples + Features

Right
Decision 88.9 89.6

(+2.7)

Wrong
Decision 11.1 10.4

(-0.7)

Agree
RightAIOutputs 44.4 44.4

Reject
WrongAIOutputs 44.4 45.1

(0.7)

Agree
WrongAIOutputs 5.6 4.9

(-0.7)

Reject
RightAIOutputs 5.6 5.6

Participants using ‘Examples + Features’ had 2.7% higher ra-
tio of ‘right’ decisions and 0.7% lower ratio of ‘wrong’ decisions
than using ‘Features’. For ‘right’ decisions, participants using ‘Fea-
tures’ and ‘Examples + Features’ had the same ratio of agreeing with
‘right’ AI outputs and participants using ‘Examples + Features’ had
a 0.7% higher ratio of rejecting ‘wrong’ AI outputs than using
‘Features’. For ‘wrong’ decisions, participants using ‘Examples +
Features’ had a 0.7% lower ratio of agreeing with ‘wrong’ AI
outputs than using ‘Features’ and the same ratio of rejecting ‘right’
AI outputs using ‘Features’

6.3 Duration

Using the system with ‘Features’, the participants spent an average
of 60 seconds on an assessment. Using the system with ‘Examples +
Features’, the participants spent an average of 45 seconds. Overall,
the usage of the system with only ‘Features’ requires an average of
15 seconds more than that of the system with ‘Examples + Features’
for a decision-making task.

6.4 Discussion

Our experimental results suggested that interactive example-based
explanations for user’s onboarding with AI (‘Example + Features’)
are more effective for the domain experts, health professionals (i.e.
therapists) to have a better-calibrated reliance on AI than presenting
only an important feature explanation (‘Features’). When the AI sys-
tem presented ‘right’ AI outputs to participants, the performance of
human + AI has been improved compared to that of humans alone.
When the AI system presented ‘wrong’ AI outputs to participants,
the performance of human + AI decreased compared to that of hu-
mans alone. Our study results follow the findings of the previous
research on understanding the effect of AI explanations during the
decision-support phase [3, 21].



Compared to using only ‘Features’, participants using ‘Exam-
ples + Features’ had 2.7% higher ratio of making ‘right’ decisions,
lower performance degradation and less overreliance on AI (Table
1). In addition, the participants using ‘Examples + Features’ spent
an average of 15 seconds less on an assessment task than those
using only ’Features’. Our study results imply the potential of im-
proving users’ onboarding with interactive example-based explana-
tions and their effective AI-assisted decision making than just using
feature-based explanations during the decision-support phase. Our
findings contrast with the findings of the previous study that during
the decision-support phase, an example-based explanation underper-
formed a feature-based explanation to support calibrated trust and
reliance on on AI [43].

Even if our results showed that interactive example-based explana-
tions can be effective for therapists to improve their onboarding with
AI and have a better-calibrated reliance on AI during human-AI col-
laborative decision-making, some participants were confused about
how interactive parts of the system work. Thus, it is important to fur-
ther explore how we can better educate and onboard with AI and AI
explanations [29]. Also, this work is limited to exploring the effect
of interactive example-based explanations for user’s onboarding with
AI and does not provide generalization as we had a small size of par-
ticipants and specified a particular AI/ML model (i.e. a feed-forward
neural network model), the format of input data (i.e. videos), and a
single clinical decision-making task (i.e. rehabilitation assessment).
Thus, further studies are required to explore how to improve users’
onboarding with AI for effective human-AI collaborative decision-
making.

7 Conclusion
In this work, we contributed to an empirical study with domain ex-
perts, health professionals (i.e. therapists) to understand the effect
of interactive example-based explanations to onboard users with AI
for human-AI collaborative decision making. Our results showed that
during an onboarding phase, our proposed interactive example-based
explanations (“Examples + Features”) assisted therapists to have a
better-calibrated reliance on AI and to have 2.7% higher ratio of
‘right’ decisions and 0.7% lower ratio of ‘wrong’ decision than “Fea-
tures” (just reviewing feature-based explanation during decision-
support phase). We discuss the potential of using interactive AI ex-
planations to support users’ onboarding with AI for better-calibrated
reliance on AI and challenges to improve human-AI collaborative
decision-making.
Table 3: Detailed Demographics of Therapists who have experience
in stroke rehabilitation (P1 - P10) for the Interviews.

PID Sex Age Occuptation Setting # of yrs

P1 Female 25 - 34 years PhysioTherapist (PT) Outpatient Clinic 7

P2 Male 25 - 34 years PhysioTherapist (PT) Inpatient Rehabilitation 2

P3 Male 25 - 34 years PhysioTherapist (PT) Home Care 8

P4 Female 35 - 44 years PhysioTherapist (PT) Outpatient Clinic 11

P5 Female 25 - 34 years PhysioTherapist (PT) Inpatient Rehabilitation 9

P6 Female 45 - 54 years PhysioTherapist (PT) Skilled Nursing Facility 30

P7 Female 35 - 44 years Occupational Therapist (OT) Outpatient Clinic 14

P8 Female 35 - 44 years Occupational Therapist (OT) Homecare 11

P9 Female 25 - 34 years Occupational Therapist (OT) Skilled Nursing Facility 6

P10 Female 25 - 34 years Occupational Therapist (OT) Inpatient Rehabilitation 5

Table 4: Detailed Demographics of Therapists who have experience
in stroke rehabilitation (TP1 - TP16) for the User Study.

PID Sex Age Occupation Setting # of yrs

TP1 Female 18 - 24 years Occupational Therapist Acute & Inpatient <1
TP2 Female 25 - 34 years Occupational Therapist Inpatient Rehabilitation 5
TP3 Male 25 - 34 years Physiotherapist Acute Care 0.25
TP4 Female 35 - 44 years Physiotherapist Outpatient Clinic 11
TP5 Female 25 - 34 years Occupational Therapist Inpatient Rehabilitation 6
TP6 Female 25 - 34 years Occupational Therapist Skilled Nursing Facility 4
TP7 Female 25 - 34 years Occupational Therapist Outpatient Clinic 5
TP8 Female 25 - 34 years Occupational Therapist Inpatient Rehabilitation 9
TP9 Male 25 - 34 years Occupational Therapist Skilled Nursing Facility 5
TP10 Female 25 - 34 years Occupational Therapist Inpatient Rehabilitation 10
TP11 Female 25 - 34 years Occupational Therapist Inpatient Rehabilitation 4
TP12 Male 25 - 34 years Physiotherapist Inpatient Rehabilitation 1.3
TP13 Female 35 - 44 years Occupational Therapist Outpatient Clinic 14
TP14 Female 35 - 44 years Physiotherapist Skilled Nursing Facility 2
TP15 Female 25 - 34 years Physiotherapist Home Care 12
TP16 Female 45 - 54 years Physiotherapist Skilled Nursing Facility 30
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