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ABSTRACT

Explainable artificial intelligence (AI) techniques are increasingly being explored
to provide insights into why AI and machine learning (ML) models provide a cer-
tain outcome in various applications. However, there has been limited exploration
of explainable AI techniques on time-series data, especially in the healthcare con-
text. In this paper, we describe a threshold-based method that utilizes a weakly
supervised model and a gradient-based explainable AI technique (i.e. saliency
map) and explore its feasibility to identify salient frames of time-series data. Us-
ing the dataset from 15 post-stroke survivors performing three upper-limb exer-
cises and labels on whether a compensatory motion is observed or not, we imple-
mented a feed-forward neural network model and utilized gradients of each input
on model outcomes to identify salient frames that involve compensatory motions.
According to the evaluation using frame-level annotations, our approach achieved
a recall of 0.96 and an F2-score of 0.91. Our results demonstrated the potential
of a gradient-based explainable AI technique (e.g. saliency map) for time-series
data, such as highlighting the frames of a video that therapists should focus on
reviewing and reducing the efforts on frame-level labeling for model training.

1 INTRODUCTION

Artificial intelligence (AI) models are increasingly being explored to support high-stake decision-
making, such as industrial predictive maintenance (Mobley, 2002) and healthcare (e.g. heart-beat
anomaly detection (Chuah & Fu, 2007), cancer diagnosis McKinney et al. (2020), rehabilitation
assessment Lee et al. (2021)). A misprediction by AI models in these high-stake domains could
have serious and lasting impacts on people and communities. As the end-users are unwilling to adopt
these technologies without explaining AI model outcomes regardless of its performance (Wang et al.,
2020), there is a growing emphasis to explain an AI model to end-users for their informed decision
making Cai et al. (2019); Lee et al. (2021); Rojat et al. (2021).

There has been an expanding focus and research in explainable AI (XAI) methods for image and
tabular data (Rojat et al., 2021). For instance, post-hoc explanations generate approximations of
an AI model outcome by producing understandable information or explore saliency maps of an AI
model outcome for image data Simonyan et al. (2013). Specifically, these saliency maps calculate
the gradient of the loss function with respect to the input pixels for the class of an AI model outcome.
Thus, these maps are useful to provide insights into which part of an image is considered important
for the model outputs.

While saliency maps are traditionally for image data, previous studies have explored adapting
saliency map methods for time series data (Rojat et al., 2021). Goodfellow et al. (2018) used Class
Activation Maps (CAM), a variant of saliency maps, (Zhou et al., 2016) to explain classifications
made by a convolutional neural network (CNN) on univariate electrocardiogram (ECG) data. As-
saf & Schumann (2019) used a CNN to forecast the average power consumption of a photo-voltaic
power plant. This study utilized a more versatile form of CAM, Grad-CAM (Selvaraju et al., 2017)
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to explain the predictions from the CNN model. However, these previous works focus on explor-
ing saliency maps as an explanation tool for a model’s output through qualitative evaluations. For
instance, after generating sequences of saliency maps of a video, these work overlaid these maps
on the input data and checked qualitatively whether the highlighted areas of time-series data are
relevant to a model output or not Samek et al. (2017). It remains unclear how well saliency maps
can be used to identify salient frames in time-series data.

In this paper, we present a threshold score method that utilizes a weakly supervised machine learning
(ML) model and a gradient-based explainable AI technique, saliency map to explain time-series data
by identifying salient frames of the data. Using the dataset of three stroke rehabilitation exercises
from 15 post-stroke survivors and labels on whether an exercise involves compensatory motions
or not, we trained a feed-forward neural network model. Given the feed-forward neural network
model, we computed the gradients of the loss function with respect to input data over all frames
and normalized these gradient scores to determine whether a compensatory motion has occurred
in a specific frame or not. After implementing a threshold score method, we utilized frame-level
annotations on the presence of a compensatory motion to evaluate the feasibility of our method. Our
results showed that our method can detect salient frames of a frame-level compensatory motion with
a recall of 0.96 and an F2-score of 0.91. This work contributed to an empirical study on how well
a weakly supervised ML model with a gradient-based explainable AI can be utilized as explainable
AI techniques for time-series data (e.g. identifying salient frames of data).

2 PHYSICAL STROKE REHABILITATION & DATA PREPROCESSING

Post-stroke survivors require conducting physical stroke rehabilitation exercises to regain their func-
tional abilities. While conducting exercises, they often compensate (e.g. lean their trunk to the side
- Figure 1b) for their limited functional abilities, which may be detrimental to long-term recovery
(Alaverdashvili et al., 2008; Pain et al., 2015). Physical therapists monitor and correct compen-
satory movement in rehabilitation exercises, which are often recorded as patients perform them at
home. However, examining through a video can be a long and tedious process. To address this
challenge, this work explores a threshold-based method that utilizes a weakly supervised ML model
and saliency maps to detect salient frames of time-series data (e.g. compensatory periods during an
exercise).

This work utilizes the dataset that consists of 300 exercise trials performed by 15 patients (Lee et al.,
2019). Each patient performed 10 trials each with his/her affected and unaffected side. The affected
side refers to the side of the body affected by the stroke, and vice versa for the unaffected side
(Figure 2). Given patients’ exercise motions, this dataset includes two types of labels: (1) labels on
each trial and (2) labels on each frame that indicates whether a compensatory motion occurs (0) or
not (1 - normal).

For processing the videos of patients performing an exercise, we utilized the Openpose(Cao et al.,
2019) to estimate the body key points of patients from the videos and extracted features that indicate
the distance from an initial to a current position at every frame of patients’ exercise videos. We
identified the maximum frame number of the dataset (i.e. 394) and padded an initial position to
samples that have a smaller number of frames than the maximum frame number for downstream
model training (Appendix. Figure 3 and Figure 4).

3 GRADIENT-BASED EXPLAINABLE TECHNIQUE FOR TIME-SERIES DATA

We describe the implementations of a weakly supervised machine learning model, a gradient-based
explainable AI technique (i.e. saliency map), and a threshold-based method to explain time-series
data (i.e. identifying salient frames of data) in the following sections.

3.1 A FEED-FORWARD NEURAL NETWORK MODEL

We applied an 80-20 split on the dataset to obtain the training (i.e. 240 exercises) and test (i.e. 60
exercises) data sets to train a feed-forward neural network model to detect whether a compensatory
motion occurs in an exercise or not. Using Skorch (Tietz et al., 2017) and three-fold cross-validation,
we grid-searched different architectures and parameters and implemented a feed-forward neural
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(a) (b) (c)

Figure 1: (a) The initial position and (b) compensatory motion of a post-stroke survivor. (c) the
saliency map of a corresponding post-stroke survivor’s exercise

network model with a test accuracy of 0.98. We summarize the architectures, hyper-parameters,
and performances of the models in the Appendix. Figure 5 and describe the final, best-performing
architecture in the Appendix. Figure 6.

3.2 COMPUTING A FRAME SCORE FROM SALIENCY MAP

After implementing a feed-forward neural network, we computed gradients of the loss function with
respect to input data over all frames. We then aggregated gradient scores of features at each frame
level and normalized this frame-level score into [0, 1] (Appendix. Figure 7).

We hypothesize that there is a threshold value between the score range [0,1] where scores less than
or equal to the threshold score indicates normal movement, and scores more than the threshold score
indicates compensation. Frames involving compensation will be deemed more important, and thus
result in a higher gradient score for the time frame.

4 EXPERIMENTS

We conducted both qualitative and quantitative evaluations to explore the feasibility of a gradient-
based explainable technique for time-series data. For the qualitative evaluation, we utilized a sample
exercise and checked whether the most important frames and features of the exercise using a saliency
map can provide relevant insights into a compensatory motion (Figure 1b).

In addition, we conducted quantitative evaluations of how well our threshold-based method can
detect compensatory motions at the frame level. We explored the threshold value ranging from 0
to 1 and empirically selected an optimal threshold value. For the evaluation of our threshold-based
approach, we utilized frame-level annotations and computed recall and f2-score with the β = 2.
As our dataset is heavily skewed (e.g. containing a larger number of normal frames than abnormal
frames with compensatory motions), we explored the effect of (i) removing zero-padded normal
frames and (ii) utilizing only samples that include compensatory movements. Also, we explored
the effect of aggregating a score over multiple windows (5, 10, 15, 20). For post-analysis, the scores
have been sorted into 2 groups: Group 0 contains scores where their corresponding frame label = 0,
while Group 1 contains scores where their frame label = 1. The data distributions of Group 0 and 1
are listed in Appendix. Table 2.

5 RESULTS

5.1 QUALITATIVE EVALUATION

Figure 1c shows a saliency map for a post-stroke survivor’s exercise trial (Figure 1a and 1b). Blue-
green regions denote the frames and features with the highest importance, while orange-red regions
indicate those with the least importance. The flat red region at the end of the map indicates zero-
padded frames. For this exercise trial, our method identified 50 - 60 frames and joint features (0:
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HeadX, 2: NeckX, 5: ShoulderRightY, 6: ElbowRightX, 7: ElbowRightY, 8: WristRightX, 9:
WristRightY, and 10:ShoulderLeftX) are most important with respect to the model classification.
After qualitatively reviewing the corresponding compensatory frames (Figure 1b), we found the
potential of our method to provide an insight into a compensatory motion: When a post-stroke
survivor strives to raise his right wrist to complete an exercise, he involved compensatory motion by
moving his head and left shoulder to the side and right shoulder upward.

5.2 QUANTITATIVE EVALUATIONS

Table 1 describes the quantitative evaluations of how well our approach can identify salient frames
with compensatory motions. We found that using only compensatory trials without padded frame
scores gave the best results of recall = 0.96, F2-score = 0.91. As we utilized the dataset of more
balanced distributions from all trials (90% of normal frames and 9% of compensatory frames in
Appendix. Table 2) to compensatory trials without padded frames (34% of normal frames and 65 of
compensatory frames in Appendix. Table 2), our approach significantly improved its performance
to identify frame-level compensatory motions. When it comes to the computation of a gradient with
different window sizes (i.e. 5, 10, 15, 20), we did not find any significantly different results. We
achieved the best performance to detect frame-level compensatory motions by using only scores
from samples involving compensatory motions and removing padded frame scores.

Experiment Best Threshold Score Recall F2-Score
(1) All trials 0.4 0.44 0.44
(2) All trials without padded frames 0.4 0.44 0.44
(3) Compensatory trials without padded frames 0.36 0.96 0.91

Table 1: Experiment results using datasets with different data distributions of normal and compen-
satory frames and window size of 5. The best result is boldfaced

5.3 DISCUSSION

In this work, we contributed to an empirical study that explores the feasibility of using a weakly
supervised ML model and a gradient-based explainable AI (XAI) technique, saliency map for ex-
plaining time-series data (e.g. post-stroke rehabilitation exercises). Our qualitative and quantitative
results are aligned with the hypothesis discussed in Section 3.2. Specifically, our results demonstrate
the potential of our approach to detect frame-level compensatory motions of post-stroke survivors
with a recall of 0.96 and an F2-score of 0.91. Our approach enables a therapist to pinpoint an im-
portant time period of a video that the therapist should prioritize reviewing and support human-AI
collaborative annotations instead of a time-consuming manual labeling process Lee et al. (2022).
However, there are several limitations to be addressed.

First, our quantitative evaluations using datasets with different distributions between normal and
abnormal frames suggest the importance of utilizing a balanced dataset for applying our threshold-
based method using a gradient-based XAI technique. When we utilized the unbalanced dataset with
both unaffected and affected motions with padded frames (9% of compensatory frames and 90% of
normal frames - Appendix. Table 2), we found that some scores were normalized to higher values
and led to higher misdetections of frame-level compensatory motions.

In addition, it is also important to consider a more systematic approach to dynamically determine
an “ideal” threshold value and address overlapping regions of scores between normal and compen-
satory frames (Appendix. Figure 8). Also, as this work only explores a feed-forward neural network
model and a saliency map to compute gradient scores using video data from 15 post-stroke survivors,
it is necessary to conduct additional studies to demonstrate the generalizability of our approach to
other ML algorithms, gradient-based explainable AI methods, and data modalities (e.g. text).
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Figure 2: Movement of Unaffected and Affected Side

Figure 3: Data Preprocessing Diagram

A APPENDIX

Experiment Group 0 Scores Group 1 Scores Total
(1) All trials 11,396 (9.64%) 106,804 (90.36%) 118,200
(2) All trials without padded frames 11,396 (9.64%) 37,048 (76.48%) 48,444
(3) Compensatory trials without padded frames 8,602 (65.75%) 4,485 (34.27%) 13,087
(4) Window size = 5 (best performance) 1,722 (65.25%) 917 (34.75%) 2,639

Table 2: Data Distribution
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Figure 4: Shape of Data and Label after Preprocessing for an Exercise Trial

Figure 5: Summary of Model Parameters and Performance. The best performed architecture and
parameters are higlighted in blue.

Figure 6: Final Model Architecture
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Figure 7: Score Computation Process

Figure 8: The histogram of normalized gradient scores using normal and abnormal, compensatory
frames. The grey area indicates the overlapping areas between normal and abnormal frames
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