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Abstract— Computer systems based on motion assessment
are promising solutions to support stroke survivors’ au-
tonomous rehabilitation exercises. In this regard, researchers
keep trying to achieve engaging and low-cost solutions suitable
mainly for home use. Aiming to achieve a system with a minimal
technical setup, we compare Microsoft Kinect, OpenPose, and
MediaPipe skeleton tracking approaches for upper extremity
quality of movement assessment after stroke. We determine
if classification models assess accurately exercise performance
with OpenPose and MediaPipe data against Kinect, using a
dataset of 15 stroke survivors. We compute Root Mean Squared
Error to determine the alignment of trajectories and kinematic
variables. MediaPipe World Landmarks revealed high align-
ment with Kinect, revealing to be a potential alternative method.

I. INTRODUCTION

After a stroke, rehabilitation therapy is crucial to diminish
impairments, promote recovery, and prevent stroke recur-
rence [1]. Therapy requires a lot of time investment and an
enormous allocation of human and financial resources [2].
Therapists encounter challenges in addressing the diversified
needs of a growing number of patients [2]. Thus, task-
oriented training [3] without supervision, or even at home,
is often recommended, raising survivors’ chances of recov-
ery and easing chronicle stage management [4]. However,
when exercising autonomously, survivors struggle to keep
their engagement in therapy due to the lack of therapists’
constant feedback and encouragement [4]. This absence of
therapists’ intervention may decrease survivors’ compliance
with treatment, leading to throwbacks in the recovery process
and treatment withdrawals [4].

Based on skeleton tracking, computer systems have
emerged as promising solutions to support autonomous
stroke rehabilitation at home or healthcare facilities [5] [6]
[7]. These aid rehabilitation training execution by providing
exercise instructions, feedback on performance, and encour-
agement, keeping engagement and promoting movement pat-
tern correction [5] [6]. Plus, they can provide therapists with
objective information about patients’ progress [8]. These
systems require specific equipment and software to acquire
body joints’ pose data (e.g., Microsoft Kinect, OpenPose, and
MediaPipe). They generate feedback on performance through
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kinematic analysis [6]. The accuracy and relevance of such
analysis depend on precise skeleton tracking approaches.

Kinematic analysis has been done to characterize im-
paired motion patterns after stroke. Researchers assessed
arm joints’ speed profiles, motion angles, and displacements
to distinguish impairment levels and healthy controls from
impaired subjects, using Kinect for motion tracking [9].
Further, research teams generated performance scores based
on kinematic assessment with Kinect, revealing a high agree-
ment with therapist’s evaluation [8].

When developing systems to support rehabilitation, a
critical requirement is the simplicity and easy usability of
solutions, promoting autonomous use while providing accu-
rate feedback [10]. Solutions involving multiple devices (e.g.,
laptops, tablets, cameras, and objects) [5] may be considered
as complex, of complicated use, and less adaptable to diverse
settings (e.g., home). Multiple and specialized device usage,
such as high-precision marker-based optical systems, implies
extra complexity and cost inherent to the final solution.

Microsoft Kinect appeared as a low-cost and ease-of-use
sensor and has been widely used in proposed rehabilitation
solutions, enabling motion capture without in-body markers
or sensors [7] [11]. With Kinect v2 discontinuation, the
sensor is no longer officially distributed, its availability in
the market decreased significantly, and support is no longer
provided [12]. This fact poses a problem for the maintenance
of previously developed solutions. At last, those may even
become obsolete. This problem applies to every solution
operating upon specialized devices with proper software,
which lifetime is uncertain.

Solutions for pose estimation based on 2D RGB images
have been proposed. OpenPose is presented as an open-
source system for real-time multi-person 2D pose estimation
[13]. MediaPipe BlazePose [14] is a single-person 2D pose
estimator. It is presented as a fast and lightweight process-
ing solution, alternative to Kinect and OpenPose methods.
Besides providing 2D pose data, it provides a z coordinate
representing depth movements.

In this paper, we determine whether novel motion capture
solutions (OpenPose and MediaPipe) are suitable to assess
stroke rehabilitation exercise performance against the widely
used Microsoft Kinect v2. We envisage the development of a
rehabilitation support solution based on a low-cost technical
setup. We hypothesise that with the information directly
provided by such methods, algorithms developed to assess
performance will achieve desirable results likewise.

Kinect is validated for rehabilitation solutions against
high precision marker-based optical systems [11] [15]. Faity



et al. [15] validated Kinect against VICON for kinematic
assessment in reaching tasks. Twenty-six healthy participants
performed movements holding a dumbbell to induce move-
ment patterns similar to stroke survivors (e.g., trembling and
compensation). Researchers assessed several performance
factors: elbow, shoulder, and trunk angles, movement effi-
ciency, speed profiles, and limb and trunk displacements.
They compared the measures with intra-class coefficient
correlation, coefficient of determination, and root mean
square error. Despite the study showing that Kinect does
not assess some dimensions with satisfactory reliability, the
authors affirm that the high potential of markerless motion
capture solutions for rehabilitation applications for in-home
and clinic use should encourage more validation studies.

Cóias et al. work [6] proposed a simpler and low-cost tech-
nical setup for compensatory movement analysis operating
only on a laptop, with a built-in webcam, to support upper
extremity exercise in real-time, using the OpenPose library
for motion tracking. OpenPose was also validated for stroke
rehabilitation support applications [16] [17]. Li et al. [16]
evaluated OpenPose performance in assessing patients’ bal-
ance to diminish falling risks against OptiTrack, with three
healthy participants. MediaPipe also appears in proposed
applications for upper limb stroke rehabilitation, revealing
promising results enhancing the potential contribution of
such solutions [18]. However, its evaluation against validated
and widely used motion capture approaches is missing.

Previous studies [16] [11] [15] lack deep evaluation con-
cerning the metrics and algorithms used to assess stroke-
relevant exercise performance components. Most works per-
formed simple evaluations with healthy participants, mainly
correlating joint trajectories. The validation of motion cap-
ture solutions, markerless, low-cost, based on a single RGB
camera, for stroke rehabilitation applications, is still needed.

In this work, seeking to achieve a system to support
stroke rehabilitation composed only of a laptop with a
built-in webcam, we determine an appropriate motion cap-
ture approach by comparing models used to assess up-
per extremity exercise performance. Microsoft Kinect v2
is a validated reference as a low-cost ease-of-use sensor
widely used in assistive solutions. We explore OpenPose
and MediaPipe BlazePose motion capture libraries against
Kinect v2. We compare binary classifiers’ performance in
assessing three exercise performance components among the
different motion-tracking approaches, using a dataset of 15
stroke survivors performing three exercises. Additionally,
we compare movement trajectories and kinematic variables
characterizing upper extremity impairments after stroke.

II. METHODOLOGY

In this section, we describe the methodology followed
to compare the outcomes provided by Kinect, OpenPose,
and MediaPipe BlazePose in upper extremity rehabilitation
videos with stroke survivors. We perform three types of
comparison. First, We compare the body keypoints’ tra-
jectories along the x and y axis. We also determine the

correspondence between the z coordinate of Kinect and Me-
diaPipe BlazePose. We describe skeleton extraction and data
normalization steps. Second, based on the provided data, we
compare relevant kinematic variables describing exercise per-
formance. We present performance components significant
for movement quality assessment and the kinematic variables
describing them. Finally, we introduce the algorithms used
to assess each performance component and compare their
performance among skeleton tracking approaches taking the
outcomes obtained with Kinect as our baseline.

A. Body Skeleton Extraction

Kinect provides the 3D coordinates of 16 body joints (Ta-
ble I), with the sensor as the origin of the coordinate system.
We use OpenPose Demo1 and MediaPipe2 Python library to
extract the body skeletons directly from the acquired images.
OpenPose provides a set of 2D coordinates of 25 body
keypoints in the image coordinate system, in pixels, and a
confidence score associated with each keypoint. MediaPipe
BlazePose provides two lists of 33 pose keypoints. One
list denoted Pose Landmarks corresponds to body keypoints
with x and y in the image coordinate system, normalized
to the image width and height, respectively. It also provides
a z coordinate representing a keypoint depth with origin at
the midpoint between skeleton hips. Smaller the value of
z, the closer the landmark is to the camera. Another list of
keypoints denoted Pose World Landmarks provides pose data
with x, y, and z in the world coordinate system, in meters,
with origin at the midpoint between skeleton hips.

Table I presents the selected body keypoints for upper ex-
tremity motion analysis from the skeleton tracking methods
and how we relate them. We apply a moving average filter
with a window size of five frames to smooth trajectories.

TABLE I: Relation between Kinect, OpenPose, and Medi-
aPipe body keypoints indices [19]. The skeleton shows the
body keypoints and coordinate systems used in this work.

Body Joint Abbr.
Kinect
Joint
Index

OpenPose
Joint
Index

MediaPipe
Joint
Index

head hd 0 0 0
spine shoulder ss 1 1 (11+12)/2
left shoulder shl 2 2 12

left elbow ebl 3 3 14
left wrist wrl 4 4 16

right shoulder shr 5 5 11
right elbow ebr 6 6 13
right wrist wrr 7 7 15
spine base sb 8 8 (23+24)/2

left hip hpl 9 9 24
right hip hpr 10 12 23

In this work, we denote keypoint’s position as s pt( j,c),
where s specifies the source tracking method in the set
S= {Kinect (K), OpenPose (O), MediaPipe Landmarks (M),
MediaPipe World Landmarks (W )}, j denotes a body joint in
the set J = {hd,ss,sha,eba,wra,sb,hpa} (Table I), a specifies
the body side in the set A = {left (l), right (r)}, c denotes a
coordinate in the set C ∈ {x,y,z}, and t is the frame number
of a total of T frames.

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
2https://google.github.io/mediapipe/solutions/pose



B. Coordinate System Transformation & Normalization

Skeleton tracking methods provide keypoints in different
coordinate systems with distinct origins: image coordinate
system (O and M) and world coordinate system, with the
centre at the camera (K) or a midpoint between skeleton hips
(W ). We apply a rigid body transformation to each keypoint
from all methods to have them in the same coordinate system,
with the Spine Base joint as the origin (Table I).

As the coordinates of the different methods have different
scales and offsets, we compensate for this fact and perform
a data normalization to compare joints’ trajectories

s p′t( j,c) =
s pt( j,c)− sµ( j,c)

sσ( j,c)
(1)

where µ is the mean position across a movement trial and σ

is the standard deviation. Keypoints with reduced variation,
i.e., less active joints, have low standard deviation values.
A low standard deviation leads to unstable normalization,
which may add a bias to our comparative analysis. We will
focus essentially on joints actively moving.

C. Performance Components & Kinematic Variables

Lee et al. [8] defined three performance components
to describe upper extremity exercise performance: Range-
of-Motion (ROM), Smoothness3, and Compensation4. Table
II presents the kinematic variables (detailed in [8]) that
describe each component computed at each timestamp. [8].
We compute kinematic variable statistics at each timestamp
(i.e., max, min, range, average, and standard deviation).

TABLE II: Kinematic variables (features) describing perfor-
mance components [8].

Component Kinematic Variables Notation

ROM

· sha and eba angles · jat (hpa ,sha ,eba), jat (sha ,eba,wra)
· eba and wra normalized relative
trajectory · nrtt (hd,eba), nrtt (hd,wra)

· eba and wra projected trajectory
at each coordinate

· nptt (hd,wra ,c), nptt (sha ,wra,c)
for c ∈C

Smooth.

· eba and wra speed, acceleration, and jerk · spt ( j),act ( j), jkt ( j)
· Normalized speed and jerk · nspt ( j), n jkt ( j)
· sp and jk Mean Arrest Period Ratio · maprt (sp, j), maprt ( jk, j)
· ac and jk zero-crossing ratios · zct (ac, j), zct ( jk, j), j ∈ {eba ,wra}

Comp.

· Spine angle · jat (ssinit ,sbinit ,ss)

· sha elevation and abduction angles · jat (sha
init ,ssinit ,sha),

jat (hpa ,sha ,eba)
· Displacement between initial and
current positions of the hd, ss, and sha

at each coordinate

· d ptt (hdinit ,hd,c),
d ptt (ssinit ,ss,c)
d ptt (shinit ,sh,c) for c ∈C

Most variables are normalized to overcome physical vari-
abilities. As with keypoints trajectories, we need to acknowl-
edge unstable normalized data to avoid biases.

D. Upper Extremity Exercises Performance Assessment

Aligned with therapists’ assessment procedures, we use
machine learning binary classification models (e.g. with
output 0 - abnormal or 1 - normal) to assess performance
components for entire movement trials. We use a Neural Net-
work (NN), a non-sequential model, using as input features
statistics summarizing the entire motion. Additionally, we

3Represents the level of joints’ jittery and irregular motion patterns.
4Compensatory movements and postural patterns adopted by the stroke

survivor to achieve the task target (e.g., shoulder elevation).

explore a Long-Short Term Memory (LSTM), a sequential
model, using kinematic variables at each timestamp as input
features. In [8], NN and LSTM revealed increased perfor-
mance on assessing the three performance components.

E. Metrics Under Evaluation and Statistical Analysis

We perform three analyses. First, We compare trajectories
along the x and y axis provided by the skeleton tracking
methods. We inspect the z coordinate from Kinect and Me-
diaPipe. Second, We compare kinematic variables computed
from different methods data. At last, we determine the
performance achieved, with both classification approaches,
on exercise assessment when using data from by OpenPose
and MediaPipe against assessment based on Kinect data. We
determine the alignment of OpenPose and MediaPipe against
Kinect using the Root Mean Squared Error (RMSE)

srmse( j,c) =

√
1
N

T

∑
t=1

(
Kvt( j,c)− svt( j,c)

)2 (2)

where v denotes the variable subject to comparison, a joint
position or a kinematic variable. RMSE enables the detec-
tion of systematic errors (offsets). We evaluate classifiers’
performance with f1 score and the mean squared error. The
f1 score is the harmonic mean between model precision and
recall being suitable when the dataset is class-imbalanced.

III. EXPERIMENTS & RESULTS

A. The Upper Extremity Dataset

We utilize the dataset from [8] of 15 stroke survivors
performing three task-oriented upper extremity rehabilitation
exercises. Exercise 1 (E1) is ‘Bring a Cup to the Mouth’.
Exercise 2 (E2) is ‘Switch a Light On’. Exercise 3 (E3)
is ‘Move a Cane Forward’. Stroke survivors performed, on
average, 10 movement trials for each exercise. The data was
collected using the Microsoft Kinect v2, with a frame rate of
30 fps. Stroke survivors characterization is detailed in [8].

B. Body Skeleton Extraction

We extracted OpenPose keypoints by running the demo,
from a command line tool to process sequences of frames5.
Detected skeletons evaluation and data cleansing is described
in our previous work [6]. We extracted MediaPipe landmarks
using its Python library6. We did landmark extraction with a
minimum detection confidence of 50%. However, MediaPipe
could not process all frames and even entire video trials. For
the study, we include the same subjects, videos, and frames
among all skeleton tracking methods.

C. Keypoints Trajectories Comparison

In Figure 1, we can see a great alignment of the wrist joint
(most active joint) among approaches, essentially along x and
y axis. Along the z axis, MediaPipe data reveal increased
displacement from the Kinect curve and a noisier pattern.

5i7-Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 32 GB RAM, NVIDIA GeForce
GTX 1070 GPU

6AMD Ryzen 5 3500U @ 2.1GHz, 12 GB RAM, AMD Radeon Vega GPU



Fig. 1: Example of left wrist trajectory of a stroke survivor
for exercise E1.

Table III presents the mean RMSE over stroke survivors
and the three exercises for relevant body joints along each
axis. From the table, we can infer that MediaPipe methods
align with the Kinect data with a lower error when com-
pared with OpenPose along x and y. Regarding MediaPipe
approaches, there is no significant difference. Additionally, it
is notable that the RMSE is much higher when we compare
trajectory along the z axis.

D. Kinematic Variables Comparison

Figure 2 shows a set of kinematic variables that describe
performance components. We can observe that skeleton
tracking methods’ variables are nearly aligned with Kinect
data. In Figure 2a, the main difference is between Kinect and
MediaPipe normalized trajectories on the z axis, as expected.
In Figure 2b, the MediaPipe Landmarks present significant
irregularities and lower alignment with Kinect. Additionally,
we may infer that the visible differences between joint angles
are due to the lack of z component for the OpenPose method
and low precision z component for MediaPipe approaches,
mainly for the shoulder angle described between elbow and
hip, which can represent a flexion or extension.

Table IV shows the mean RMSE and standard deviation,
over exercises and stroke survivors, of kinematic variables.
In this analysis, we only included the normalized variables.
We excluded cases in which a low normalization factor could
induce a bias in the analysis. From the Table, we can observe
that variables from all methods align with Kinect variables at
some level. We highlight the low error for MediaPipe World
Landmarks (W ), which is significant for some variables.

E. Quality of Movement Assessment Models

We utilize the ‘Scikit-learn’ [20] and ‘Pytorch’ [21] li-
braries for model implementation. For the NN, we explore
architectures with one to three layers with 14, 16, 32, 48, 64,
96, 128, 256, and 512 hidden units with adaptive learning
rate. We applied 500 iterations. For the LSTM approach, we
explored a many-to-one architecture with one to three LSTM
layers with 16, 32, and 64 hidden units with 0.5 dropout.
We applied two fully connected layers with the same hidden
units to produce an output. A Sigmoid function was applied
to produce class probability at the last fully connected layer.

(a)

(b)

Fig. 2: Examples of kinematic variables describing perfor-
mance: (a) wrist projected trajectory along each coordinate
that described ROM; (b) shoulder and spine angles to detail
compensatory movements.

The model converged in one epoch. We utilized the ‘Adam’
optimizer, ReLu activation function, and Cross Entropy Loss
for both approaches. We tested various initial learning rates
(e.g., 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1).

We conduct Leave-One-Subject-Out cross-validation
method to evaluate our models. In this method, we take one
subject for validation and train the model on the rest.

F. Performance Assessment Comparison

We test two binary classification approaches to assess three
exercise performance components. Table V shows model
parameters and classification performance results for the
three exercises and performance components. As we can ob-
serve, with the data from OpenPose and MediaPipe methods,
models have equal or increased accuracy in assessing perfor-
mance in most scenarios compared with classification upon
Kinect data. For the compensation component in exercise E3,
the NN revealed a poor f1 score, which could be associated
with the lack of precise in-depth information. In this case,
LSTM had a superior performance with OpenPose data.

IV. DISCUSSION

We performed three comparison steps to determine if
novel skeleton tracking approaches are suitable alternatives



TABLE III: Alignment of the OpenPose and MediaPipe body keypoints (Table I) trajectories against Kinect v2 determined
through mean RMSE over three exercises, stroke survivors movement trials, and mean standard deviation.

c hd ss shl ebl wrl shr ebr wrr sb

x
O vs. K 0.69 ± 0.24 0.82 ± 0.30 0.82 ± 0.33 0.73 ± 0.19 0.67 ± 0.25 0.75 ± 0.16 0.76 ± 0.20 0.78 ± 0.23 1.29 ± 0.27
M vs. K 0.59 ± 0.22 0.68 ± 0.27 0.67 ± 0.33 0.63 ± 0.17 0.61 ± 0.23 0.66 ± 0.22 0.64 ± 0.20 0.75 ± 0.31 1.23 ± 0.29
W vs. K 0.59 ± 0.22 0.68 ± 0.27 0.67 ± 0.33 0.63 ± 0.17 0.61 ± 0.23 0.66 ± 0.22 0.64 ± 0.20 0.75 ± 0.31 1.23 ± 0.29

y
O vs. K 1.05 ± 0.29 1.00 ± 0.30 0.92 ±0.35 0.66 ± 0.28 0.75 ± 0.25 0.83 ± 0.25 0.61 ± 0.20 0.64 ±0.16 1.29 ± 0.25
M vs. K 0.95 ±0.36 0.96 ± 0.39 0.84 ± 0.39 0.65 ± 0.28 0.71 ± 0.23 0.72 ± 0.28 0.55 ± 0.18 0.62 ± 0.19 1.20 ± 0.32
W vs. K 0.94 ± 0.35 0.98 ± 0.39 0.87 ± 0.38 0.65 ± 0.28 0.73 ± 0.24 0.72 ± 0.28 0.55 ± 0.18 0.62 ± 0.19 1.22 ± 0.32

z
M vs. K 1.07 ± 0.33 1.19 ± 0.33 1.16 ± 0.33 1.11 ± 0.32 1.19 ± 0.34 1.31 ± 0.35 1.06 ± 0.39 1.20 ± 0.22 1.35 ± 0.22
W vs. K 1.07 ± 0.33 1.19 ± 0.33 1.18 ± 0.33 1.14 ± 0.32 1.19 ± 0.34 1.31 ± 0.35 1.06 ± 0.39 1.20 ± 0.22 1.35 ± 0.22

TABLE IV: Alignment of the OpenPose (O) and MediaPipe Landmarks (M) and World Landmarks (W ) kinematic variables
with Kinect (K) represented by mean RMSE and standard deviation over three exercises, stroke survivors movement trials.

ROM

ja(hpa ,sha ,eba) ja(sha ,eba ,wra) nrt(hd,eba) nrt(hd,wra)
O vs. K 0.42 ± 0.17 0.68 ± 0.19 0.10 ± 0.05 0.14 ± 0.06
M vs. K 0.50 ± 0.19 0.88 ± 0.28 0.17 ± 0.08 0.21 ± 0.12
W vs. K 0.34 ± 0.15 0.52 ± 0.17 0.11 ± 0.05 0.12 ± 0.05

npt(hd,wra ,x) npt(hd,wra ,y) npt(hd,wra ,z) npt(sh,wra ,x) npt(sh,wra ,y) npt(sh,wra ,z)
O vs. K 0.88 ± 0.99 0.13 ± 0.06 1.31 ± 1.16 0.19 ± 0.09
M vs. K 0.95 ± 1.13 0.14 ± 0.06 1.53 ± 1.24 1.22 ± 1.13 0.19 ± 0.09 0.96 ± 1.33
W vs. K 0.79 ± 0.80 0.13 ± 0.06 1.25 ± 0.91 1.07 ± 0.96 0.18 ± 0.09 0.80 ± 0.74

Smoothness

nsp(eba) n jk(eba) mapr(sp,eba) mapr( jk,eba) zc(ac,eba) zc( jk,eba)
O vs. K 0.12 ± 0.02 0.05 ± 0.01 0.25 ± 0.05 0.15 ± 0.03 0.13 ± 0.03 0.10 ± 0.02
M vs. K 0.11 ± 0.02 0.04 ± 0.01 0.25 ± 0.05 0.13 ± 0.02 0.17 ± 0.02 0.12 ± 0.02
W vs. K 0.11 ± 0.02 0.04 ± 0.02 0.22 ± 0.05 0.13 ± 0.02 0.15 ± 0.03 0.15 ± 0.03

nsp(wra) n jk(wra) mapr(sp,wra) mapr( jk,wra) zc(ac,wra) zc( jk,wra)
O vs. K 0.11 ± 0.02 0.05 ± 0.02 0.21 ± 0.04 0.13 ± 0.02 0.14 ± 0.03 0.10 ± 0.03
M vs. K 0.11 ± 0.02 0.04 ± 0.01 0.24 ± 0.06 0.12 ± 0.02 0.15 ± 0.03 0.11 ± 0.02
W vs. K 0.11 ± 0.02 0.04 ± 0.01 0.22 ± 0.05 0.12 ± 0.02 0.25 ± 0.04 0.15 ± 0.03

Compensation

ja(ssinit ,sbinit ,ss) ja(sha
init ,ssinit ,sha) ja(hpa ,sha ,eba)

O vs. K 0.04 ± 0.03 0.42 ± 0.24 0.42 ± 0.17
M vs. K 0.18 ± 0.13 0.39 ± 0.24 0.48 ± 0.17
W vs. K 0.06 ± 0.03 0.19 ± 0.10 0.33 ± 0.16

TABLE V: Classifiers parameters and performance from Leave-One-Subject-Out Cross-Validation
Components ROM Smoothness Compensation

Source Algorithms Exercise Param. f 1 mse Param. f 1 mse Param. f 1 mse

Kinect

NN
E1 (32,32) | 0.1 0.782 ± 0.409 0.171 ± 0.347 (16,16) | 0.005 0.792 ± 0.305 0.244 ± 0.279 (512) | 0.1 0.767 ± 0.381 0.257 ± 0.394
E2 (16) | 0.1 0.843 ± 0.326 0.127 ± 0.277 (64,64,64) | 0.001 0.642 ± 0.407 0.297 ± 0.281 (16) | 0.001 0.768 ± 0.398 0.247 ± 0.405
E3 (64,64,64) | 0.001 0.720 ± 0.390 0.316 ± 0.403 (32) | 0.05 0.803 ± 0.338 0.228 ± 0.349 (14,14,14) | 0.05 0.624 ± 0.468 0.325 ± 0.437

LSTM
E1 (16) | 0.1 0.786 ± 0.410 0.214 ± 0.410 (16) | 0.1 0.857 ± 0.350 0.143 ± 0.350 (32,32) | 0.0005 0.643 ± 0.479 0.214 ± 0.410
E2 (16,16) | 0.0005 0.800 ± 0.400 0.200 ± 0.400 (64) | 0.001 0.933 ± 0.249 0.067 ± 0.249 (16) | 0.0001 0.733 ± 0.442 0.267 ± 0.442
E3 (16,16) | 0.0001 0.800 ± 0.400 0.200 ± 0.400 (16) | 0.1 0.800 ± 0.400 0.200 ± 0.400 (16) | 0.0001 0.800 ± 0.400 0.200 ± 0.400

OpenPose

NN
E1 (14) | 0.01 0.846 ± 0.346 0.148 ± 0.308 (14) | 0.1 0.767 ± 0.381 0.257 ± 0.394 (128) | 0.1 0.711 ± 0.450 0.285 ± 0.436
E2 (32) | 0.05 0.812 ± 0.378 0.133 ± 0.322 (14) | 0.1 0.592 ± 0.484 0.415 ± 0.481 (64) | 0.05 0.681 ± 0.401 0.341 ± 0.378
E3 (14,14) | 0.005 0.774 ± 0.394 0.130 ± 0.218 (256) | 0.05 0.804 ± 0.340 0.227 ± 0.355 (32,32,32) | 0.005 0.478 ± 0.410 0.437 ± 0.335

LSTM
E1 (16) | 0.0005 0.857 ± 0.350 0.143 ± 0.350 (16) | 0.1 0.857 ± 0.350 0.143 ± 0.350 (32) | 0.0005 0.929 ± 0.258 0.071 ± 0.258
E2 (32) | 0.0005 0.800 ± 0.400 0.200 ± 0.400 (16) | 0.0001 0.667 ± 0.471 0.333 ± 0.471 (16) | 0.0001 0.800 ± 0.400 0.200 ± 0.400
E3 (16) | 0.001 0.733 ± 0.442 0.267 ± 0.442 (16) | 0.1 0.800 ± 0.400 0.200 ± 0.400 (16) | 0.0001 0.733 ± 0.442 0.267 ± 0.442

MediaPipe
Landmarks

NN
E1 (14) | 0.001 0.839 ± 0.349 0.164 ± 0.336 (16) | 0.1 0.767 ± 0.381 0.257 ± 0.394 (64) | 0.1 0.853 ± 0.349 0.142 ± 0.329
E2 (14,14) | 0.05 0.780 ± 0.395 0.212 ± 0.357 (14,14,14) | 0.005 0.623 ± 0.453 0.332 ± 0.393 (128) | 0.05 0.648 ± 0.459 0.356 ± 0.399
E3 (64,64) | 0.05 0.635 ± 0.419 0.195 ± 0.272 (14) | 0.1 0.800 ± 0.339 0.235 ± 0.353 (16,16) | 0.01 0.490 ± 0.437 0.363 ± 0.316

LSTM
E1 (16) | 0.001 0.857 ± 0.350 0.143 ± 0.350 (16) | 0.1 0.857 ± 0.350 0.143 ± 0.350 (16) | 0.005 0.929 ± 0.258 0.071 ± 0.258
E2 (32,32) | 0.0005 0.867 ± 0.340 0.133 ± 0.340 (32) | 0.001 0.733 ± 0.442 0.267 ± 0.442 (16) | 0.0005 0.800 ± 0.400 0.200 ± 0.400
E3 (32,32) | 0.0001 0.800 ± 0.400 0.200 ± 0.400 (16) | 0.1 0.800 ± 0.400 0.200 ± 0.400 (32) | 0.001 0.733 ± 0.442 0.267 ± 0.442

MediaPipe
World Landmarks

NN
E1 (16) | 0.01 0.914 ± 0.254 0.036 ± 0.048 (16) | 0.1 0.767 ± 0.381 0.275 ± 0.394 (64,64) | 0.01 0.853 ± 0.349 0.142 ± 0.329
E2 (16,16) | 0.05 0.841 ± 0.340 0.113 ± 0.268 (16,16) | 0.05 0.658 ± 0.467 0.348 ± 0.464 (32) | 0.005 0.567 ± 0.478 0.298 ± 0.395
E3 (64) | 0.05 0.737 ± 0.381 0.284 ± 0.389 (16) | 0.1 0.800 ± 0.339 0.235 ± 0.353 (64,64,64) | 0.05 0.490 ± 0.457 0.427 ± 0.425

LSTM
E1 (16) | 0.1 0.786 ± 0.410 0.214 ± 0.410 (16) | 0.1 0.857 ± 0.350 0.143 ± 0.350 (16) | 0.05 0.643 ± 0.479 0.357 ± 0.479
E2 (32) | 0.0001 0.667 ± 0.471 0.333 ± 0.471 (64) | 0.001 0.867 ± 0.340 0.133 ± 0.340 (16) | 0.0001 0.733 ± 0.442 0.267 ± 0.442
E3 (32) | 0.0001 0.800 ± 0.400 0.200 ± 0.400 (16) | 0.1 0.800 ± 0.400 0.200 ± 0.400 (16,16) | 0.0001 0.733 ± 0.442 0.267 ± 0.442

to the discontinued Microsoft Kinect: OpenPose, MediaPipe
Landmarks, and MediaPipe World Landmarks.

First, we compare keypoint trajectories provided by the
different approaches. Table III presents the RMSE for each
method against our baseline, the Kinect v2. Due to the
applied normalization, normalized trajectories for less active
body joints during movement performance are unstable,
which is revealed by the higher RMSE for body joints
such as the spine base. Active body joints, such as the
elbow and the wrist, with stable normalization, lead to a
more precise comparison. MediaPipe Landmarks and World
Landmarks revealed lower RMSE for trajectories along the
x and y axis for all joints. Looking at the z component for
MediaPipe methods, we observe that the RMSE is higher
for this coordinate but not specially higher than for x and
y components. Between Landmarks and World Landmarks,
there is no meaningful difference.

Second, we compare the kinematic variables describing

exercise performance components calculated directly from
each skeleton tracking approach data after coordinate system
transformation. Since most variables are already normalized
to overcome physical variabilities, we compare these directly
through RMSE. From Table IV, all variables are at some
level aligned with Kinect variables. MediaPipe World land-
marks reveal lower RMSE, mainly for shoulder elevation and
abduction/flexion angles. This result may indicate that the z
component from MediaPipe is relevant to determine joint
extensions and flexions in each exercise.

Third, we compare classifiers’ performance. Table V
shows that based on the 2D skeleton data, for all ex-
ercises and performance components, classifiers equal or
even surpass performance based on Kinect data in most
scenarios. One exception is visible for the NN classifier
when assessing the compensation component for exercise E3.
The lower performance could be explained by the lack of z
component in the OpenPose case or the lower precision in



depth information provided by MediaPipe. The lack of a z
component, could lead to inaccurate measures of shoulder
angles and trunk displacements that characterize compen-
sation. However, LSTM outperformed NN in this scenario,
which makes us discard this hypothesis.

Previous works do not compare classification models
performance on assessing rehabilitation exercises [11] [15].
This analysis is essential to inspect alternatives to Kinect v2.
NN and LSTM were explored in [6] and [8]. In [8], binary
classification output was used to generate global performance
scores to determine the agreement between computer-based
and therapists’ assessments. In [6], the NN was adapted
for real-time compensation assessment, providing feedback
during exercise performance in a user interface to support
rehabilitation. Binary classification might act as a trigger
mechanism for feedback engines, which notify patients
which motion patterns they should correct.

V. CONCLUSION

In this work, we aim to determine a suitable novel motion
capture approach for the development of a low-cost system
to support stroke rehabilitation. We compare OpenPose and
MediaPipe against the widely used and already validated in
this field, Microsoft Kinect.

Keypoint trajectory comparison revealed that MediaPipe
Landmarks and World Landmarks have higher alignment
with Kinect and less irregular patterns. The z component
provided by these methods shows less alignment than x
and y components. Comparison between kinematic variables
describing exercise performance reveals that all methods can
follow Kinect. MediaPipe World Landmarks show higher
alignment with Kinect, mainly in compensatory angles.

As we hypothesize, classifiers assessed exercise perfor-
mance with equal or higher accuracy based on data provided
by OpenPose and MediaPipe, making us conclude that for
the specified set of exercises, the lack of in depth information
is not a limitation for quality of movement assessment.

Allied with the advantages given by MediaPipe as a faster
and lightweight library for skeleton tracking, the provided
World Landmarks revealed significant alignment with Kinect
keypoints trajectories and kinematic variables.
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