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Artificial intelligence (Al) is increasingly being considered to assist human decision-making in high-stake
domains (e.g. health). However, researchers have discussed an issue that humans can over-rely on wrong
suggestions of the Al model instead of achieving human Al complementary performance. In this work, we
utilized salient feature explanations along with what-if, counterfactual explanations to make humans review
Al suggestions more analytically to reduce overreliance on Al and explored the effect of these explanations on
trust and reliance on Al during clinical decision-making. We conducted an experiment with seven therapists
and ten laypersons on the task of assessing post-stroke survivors’ quality of motion, and analyzed their
performance, agreement level on the task, and reliance on AI without and with two types of Al explanations.
Our results showed that the AI model with both salient features and counterfactual explanations assisted
therapists and laypersons to improve their performance and agreement level on the task when ‘right’ Al
outputs are presented. While both therapists and laypersons over-relied on ‘wrong’ Al outputs, counterfactual
explanations assisted both therapists and laypersons to reduce their over-reliance on ‘wrong’ Al outputs
by 21% compared to salient feature explanations. Specifically, laypersons had higher performance degrades
by 18.0 f1-score with salient feature explanations and 14.0 f1-score with counterfactual explanations than
therapists with performance degrades of 8.6 and 2.8 f1-scores respectively. Our work discusses the potential
of counterfactual explanations to better estimate the accuracy of an Al model and reduce over-reliance on
‘wrong’ Al outputs and implications for improving human-Al collaborative decision-making.
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1 INTRODUCTION

As advanced artificial intelligence (AI) and machine learning (ML) models have achieved equivalent
results or outperformed humans at decision-making tasks (e.g. screening lung cancer [4]), these
AT and ML models are increasingly being considered to increase efficiency and reduce the cost
of performing decision-making tasks from various types of organizations and domains [59] (e.g.
health [14, 42, 56], bail decisions [32], child welfare services [9], university admissions decisions
[16], etc.). Specifically, researchers have discussed the potential of human and AI/ML teaming to
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achieve better results than either humans or AI/ML models alone [5, 42, 43]. However, previous
research works have discussed that users might place too much trust in the AI/ML system and even
agree with ‘wrong’ Al outputs [10, 11, 38].

Many researchers have discussed that the explainability [61] of a system is critical for human-
Al collaborative decision-making [14, 42]. In particular, humans can review Al explanations to
understand how the Al models generate outputs [61] and identify whether an Al output is right
or not [14, 42]. There is growing number of studies to evaluate the effect of Al explanations on
decision-making tasks [5, 10, 11, 14, 38, 42, 64]. For instance, researchers studied the effect of Al
explanations on over-reliance using the simulated Al models or the tasks that do not require domain
experts, such as judges or clinicians [5, 38, 64]. However, there has been contradictory perspectives
on the effect of Al explanations on user’s trust on an Al output: users’ trust in an algorithmic
decision is not affected by the explanation interface [16] or can be increased by just presenting
explanations [5].

In this work, we contribute to an empirical study that analyzes the effect of Al explanations on
users’ trust and reliance on Al during clinical decision-making. Specifically, we focus on the task of
assessing post-stroke survivors’ quality of motion [41]. Among various types of Al explanations
[39, 61], this work explores salient feature analysis and counterfactual explanations for the following
reasons. First, the previous research describes that therapists preferred to review feature-based
explanations on rehabilitation assessment tasks [41]. However, the previous research discusses
the issues of these feature-based explanations on overtrust in Al [29, 37, 64]. One potential reason
for overreliance on Al might be that humans mostly employ heuristics and shortcuts while rarely
involving analytical thinking during decision-making [10, 27]. Previous research [10] discusses
the potential of cognitive forcing functions (e.g. not showing Al suggestions by default or waiting
before showing Al suggestions) to increase analytical thinking and reduce overreliance. In this work,
we assume that reviewing counterfactual explanations [47, 62, 64] will allow a user to critically
think of how to change an Al output and more rigorously review an Al output than widely used Al
explanations (e.g. feature-based or example-based explanations) that show information relevant to
an Al output. We hypothesize that reviewing counterfactual explanations [47, 62, 64] will improve
the user’s analytical review of an Al output, assist the user to achieve better calibrated trust in Al,
and reduce overreliance on it.

To this end, we conduct a within-subject experiment with seven therapists and ten laypersons to
compare the effect of counterfactual explanations with one of the widely used Al explanations,
salient feature explanations [5, 16, 38, 42]. Our results show that the human + Al team with both
salient feature and counterfactual explanations improved the performance and agreement level on
decision-making tasks only when ‘right’ Al outputs were presented. In contrast, when ‘wrong’ Al
outputs were presented, the human + Al team with salient feature analysis had higher overreliance
on ‘wrong’ Al outputs while the human + Al team with counterfactual explanations reduced
overreliance on ‘wrong’ Al outputs by 21% compared to salient feature explanations.

When we analyzed the performance and the effect of Al explanations by therapists and layper-
sons, therapists had lower performance degradation and overreliance on ‘wrong’ Al outputs than
laypersons: therapists’ human + Al team performance was lower than their human alone per-
formance by 8.6 f1-score with salient feature and 2.8 f1-score with counterfactual explanations;
laypersons’ human + Al team performance was lower than their human alone performance by 18.0
f1-score with salient feature and 14.0 f1-score with counterfactual explanations. Overall, reviewing
counterfactual explanations assisted both therapists and laypersons to diversify their assessment
(i.e. lower agreement level) and have more cases of rejecting ‘wrong’ Al outputs and fewer cases of
agreeing with ‘wrong’ Al outputs than salient feature analysis by 19% from therapists and by 35%
from laypersons.
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When it comes to a self-reported usability score, therapists and laypersons had a higher self-
reported trust score (73.78 out of 100) on the Al system with salient feature analysis than the Al
system with counterfactual explanations (45.20 out of 100). The self-reported trust score of the
system with counterfactual explanations is closer to the system performance (0.375: 3 right outputs
of out 8) than that of the system with salient feature analysis.

Overall, this work provides new insights into the potential of counterfactual explanations to
reduce overreliance on ‘wrong’ Al outputs and better estimate the performance of an Al model
through a user study using uncontrolled Al outputs and explanations with therapists and laypersons
on clinical decision-making tasks (i.e. rehabilitation assessment). In addition, our work compares
the effect of Al outputs and explanations on domain experts and lay group participants. Our work
advances ongoing discussions around the implications for improving human-AI collaborative
decision-making in high-stake domains (e.g. health) [15, 42, 44].

2 RELATED WORK
2.1 Towards Human-Al Collaborative Decision-Making

With the recent advance in artificial intelligence (AI) and machine learning algorithms, AI/ML
models are increasingly being considered to assist humans’ decision-making tasks in a variety of
domains (e.g. health). Instead of applying fully autonomous Al systems, researchers have explored
the feasibility of human-AI collaborative decision-making, in which an Al model provides humans
new data-driven insights on a task for achieving complementary performance, outperforming
neither of the AI or the human alone [5, 30, 42, 43]. For instance, a deep learning-based system has
been used in clinics to bring new data-driven insights to assist the diagnosis of cancer [15], the
detection of diabetic eye disease [8], or the assessment of physical stroke rehabilitation assessment
[42].

Although previous research describes the potential of AI/ML systems to outperform human
experts on prediction tasks [18, 32, 40], it still remains a challenge to develop and integrate these
systems in practice due to the lack of human-centered designs and performing as a "black-box"
system [13-15, 22, 31, 41, 65]. For the issue of lack of human-centered designs, there has been
increasing recent research efforts [8, 15, 22, 41, 58, 65] that highlight the importance of involving
stakeholders to understand their practices and needs [15, 41, 65] and socio-environmental factors
[8] for the design and evaluation of a system. For instance, Yang et al. [65] conducted a field
evaluation on the design of a decision support tool for cardiologists with synthetic data and found
that clinicians are more likely to embrace a tool that augments their decision-making in natural
and intuitive ways. Lee et al. [41] conducted interviews and focus-group sessions with therapists to
understand the challenges and needs during rehabilitation assessment to design a human-centered
decision support system.

2.2 User Studies of Explainable Al

In addition, researchers have discussed the importance of an Al explanation to communicate an
AT output to a user [5, 20, 29] and realize human-AlI collaboration [48] for a decision-making
task [15, 42]. There has been a growing number of studies that have evaluated the effect of Al
explanations in diverse decision-making tasks (e.g. house price prediction [55], image classification
[2], student admission [16], deception detection [38], stroke rehabilitation assessment [42]) and
aspects, such as whether an Al explanation assists a user to debug [29] or update an Al model
[14, 42] or improves user’s trust in AI [10, 14, 36, 52].

For instance, Alqaraawi et al. [2] conducted a user study on image classification tasks to evaluate
the performance of the saliency map, an XAI technique that highlights input pixels in the original
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images that contribute to a model prediction and discussed the limited usefulness of saliency map
to assist participants to anticipate a model output. Wang and Yin [64] conducted the randomized
experiment using four types of common model-agnostic explainable Al methods and discussed the
effect of Al explanations could be largely different where people have varying levels of domain
expertise.

There have been contradictory perspectives on the effect of Al explanations on user’s trust in an
Al output: users’ trust in an algorithmic decision is not affected by the explanation interface [16]
or can be increased by just presenting explanations [5] or even when explanations are randomly
chosen [38]. According to the study with MTruk worker on the task of deception detection task [38],
Lai and Tan discussed that the presentation of Al-predicted labels and explanations improves human
performance on a task. In contrast, Bussone et al. discussed that providing richer explanations
could lead to a harmful effect: overreliance on the system [11]. Along this issue, Buccinca et al.
[10] discussed the cognitive forcing intervention, such as slowing down the process and asking the
person to make a decision before seeing the Al recommendation, can reduce the overreliance on AL

In addition to the contradictory perspectives on the effect of explanations on trust, our research
community still requires additional studies to understand the effect of Al explanations on overre-
liance [54]. Specifically, even if Bussone et al. [11] and Buccinca et al. [10] investigated the effect
of Al explanations on user’s overreliance, previous research utilized a mock-up decision support
system that operates with the wizard-of-oz approach [11] or a simulated AI model [10]. Other
works that utilize AI/ML models focused on tasks that do not require domain experts, such as
judges or clinicians [5, 38, 64].

In this work, we focused on the Al-assisted clinical decision-making task (i.e. physical stroke
rehabilitation assessment) and investigate the effect of the salient feature and counterfactual
explanations on users’ trust and overreliance on Al Specifically, this work utilized uncontrolled Al
model outputs and explanations implemented by the dataset of 15 post-stroke survivors in contrast
to existing previous research that utilizes simulated and controlled AI outputs and explanations
[10, 11, 49] to understand the effect of Al explanations and the issue of overreliance. This work
contributes to increasing knowledge on the effect of Al explanations by (i) comparing human
alone and human + Al team in terms of performance, agreement level, and the number of ‘right’
or ‘wrong’ decisions and (ii) analyzing these evaluation metrics between domain experts (i.e.
therapists) and laypersons. This work further discusses the potential of counterfactual explanations
as a cognitive forcing function to better achieve a calibrated trust in Al and reduce overreliance on
Al and implications for improving human-AlI collaborative decision-making in high-stake domains
(e.g. health) [15, 42, 44].

3 STUDY DESIGN

The primary research question of this work is to investigate the effect of Al explanations on
users’ trust and reliance on imperfect Al outputs. Building upon growing works on the usage of
explainable AI methods for improving Al-assisted decision-making [10, 11, 64], we hypothesize
that counterfactual explanations [47, 62], a type of Al explanations that describe how the inputs
can be modified to achieve an Al output in a certain way, will increase user’s analytic reviews
and deliberations on an Al output and reduce user’s overreliance on ‘wrong’ Al outputs. To this
end, we conducted a within-subject experiment with therapists and laypersons in the context of
assessing post-stroke survivors’ quality of motion. Specifically, we compared the effect of using a
decision support system with counterfactual explanations (Figure 1) to a baseline system with one
of the widely used explainable Al techniques, salient features, calculating the importance of input
features, [41, 45, 46]. Our study aims to explore the following research question:
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e How do counterfactual explanations impact user’s (1) performance & agreement level on
decision-making tasks and (2) reliance and trust on Al outputs?

HomeTab | Without Explanations | With Explanations

Select Patient
i
Start timer Al Prediction Confidence Score
[The score of ROM is predicted as ZI(Confidence: 99%),] because

SallentFeatures MaxShoulderAbduction
N (Affected: 0.27 / Unaffected: 0.70)
Analysis

Trial #1

ROM Assessment

COMP Assessment

N

RangeElbowFlexi xShoulderFlexion
(Affected: 1.00 / Unaffected; 0.24) (Affecg€d: 1.00 / Unaffected: 0.71)

—— Affected
-~ Unaffected

(What if Explanations: h
the Al prediction will be updated to the score of 0 if
MaxShoulderFlexion value is decreased to 0.65
Submit \RangeElbowFIexion value is decreased to 0.19 )

(@) (b)

Fig. 1. The Al-based decision support system that presents (a) the video of post-stroke survivor’s exercises and
(b) the predicted assessment score by Al along with salient feature-based explanations that compare a post-
stroke survivor’s unaffected and affected side using the top three most important features and counterfactual,
what-if explanations that describe how input features need to be changed to flip an Al output (e.g. ‘correct’
to ‘incorrect’ ROM).

3.1 Clinical Decision Making Task: Physical Stroke Rehabilitation Assessment

In this work, we focus on a clinical decision-making task: assessing the quality of motion of
patients affected by stroke, the second leading cause of death and third most common contributor
to disability [19]. Building upon previous works on Al-assisted decision-making on physical stroke
rehabilitation assessment [42], this work utilizes an upper-limb rehabilitation exercise (Figure
2) and two performance components of rehabilitation assessment: Range of Motion (ROM) and
Compensation.

For an exercise, a post-stroke survivor has to raise his or her wrist to the mouth as if drinking
water (Figure 2a). For the rehabilitation assessment, the ‘ROM’ component refers to how closely a
post-stroke survivor achieves the target position of an exercise (e.g. bring the wrist to the mouth) and
the ‘Compensation’ component indicates whether a post-stroke survivor involves any unnecessary
joints to perform an exercise (e.g. leaning trunk to the side and backward - Figure 2b).

For the rehabilitation assessment task, participants went through the tutorial on rehabilitation
assessment and were asked to review the video of post-stroke survivor’s exercises and assess the
post-stroke survivor’s quality of motion in terms of the ‘ROM’ and the ‘Compensation’. The score
guidelines for rehabilitation assessment can be found in Table 3 in the Appendix.
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(a) E1-Unaffected (b) E1-Affected

Fig. 2. Sample Unaffected and Affected Motions of an Exercise: (a) a patient can raise the patient’s wrist to
the mouth, (b) a patient compensated with trunk and shoulder joints.

3.2 Dataset, Al Models and Explanations

3.2.1 Dataset and Kinematic Features.

We utilized the dataset of a ‘Bring a cup to the mouth’ upper-limb exercise from 15 post-stroke
survivors [40]. Specifically, this dataset includes (1) the 300 videos of 15 post-stroke survivors
performing the exercise (10 trials using their unaffected and affected side by stroke respectively),
(2) their estimated joint positions using a Kinect sensor v2, and (3) the annotations by the expert
therapist, who evaluated the post-stroke survivors’ using clinically validated Fugl Meyer Assessment
[60] and watched the recorded videos without reviewing any Al outputs.

Given the estimated joint positions of post-stroke survivors’ exercises, we extracted various
kinematic features based on the previous work [40, 60]. For the ‘ROM’ component, we extracted
joint angles (e.g. elbow flexion, shoulder flexion, elbow extension), normalized relative trajectory
(i.e. Euclidean distance between two joints - head and wrist, head and elbow), and normalized
trajectory distance (i.e. the absolute distance between two joints - head and wrist, shoulder and
wrist) in the X, y, z coordinates [40]. For the ‘Compensation’ component, we extracted normalized
trajectories (distances between joint positions of head, spine, and shoulder in the x, y, z coordinates
from the initial to current frames) to distinguish the occurrence of a compensated movement
[40, 60]

3.2.2 Al Models and Explanations.

We utilized a feed-forward Neural Network model to classify the quality of post-stroke survivor’s
motion due to its out-performance shown in the previous work [40]. Specifically, we grid-searched
various architectures (i.e. one to three layers with 32, 64, 128, 256, 512 hidden units) and an adaptive
learning rate with different initial learning rates (i.e. 0.0001,0.005,0.001,0.01,0.1) using cross-
entropy loss and ‘AdamOptimizer’ until the tolerance of optimization became 0.0001 or the maximum
200 iterations. We applied the leave-one-subject-out cross-validation, which trains a machine
learning (ML) model with data from all post-stroke survivors except one post-stroke survivor, and
test the model with the held-out post-stroke survivor. The model parameters that achieved the
best F1 score during the cross-validation are described in the Appendix. Table 4. The trained ML
model achieved an average F1-score of 0.9285 for the ‘/ROM’ and an average F1-score of 0.7867 for
‘Compensation’ performance component.
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After training ML models, we utilized widely used, open-source libraries to generate Al ex-
planations: salient feature analysis and counterfactual explanations. Among various types of Al
explanations, this work focuses on exploring salient feature analysis, building upon the previous
research that described therapists’ preferences in reviewing feature-based explanations on rehabil-
itation tasks [41]. However, the previous research describes the issues of these explanations on
overtrust in Al [29, 37, 64]. This work assumes that counterfactual explanations will induce users
to engage in a more critical review of an Al output by thinking about how to change an Al output
compared to other widely used Al explanations (e.g. feature-based or example-based explanations)
that provide relevant information on confirming an AI output. Thus, this work explores whether
the counterfactual, what-if explanations [12] can assist users to better critically review Al outputs
and explanations.

We utilized the SHAP [46, 57] for identifying salient features and the DiCE library [47] for gen-
erating the counterfactual explanations. For salient feature explanations (Figure 1b), we identified
patient-specific, salient features and utilized only the top three salient features with the highest
scores to avoid overwhelming users [35, 41]. For the presentation of these salient features, we
utilized a radar chart to effectively show the comparison of identified features on post-stroke sur-
vivors’ unaffected and affected sides to follow the therapist’s practices [3, 41]. For instance, Figure
1b shows that the system identified ‘MaxShoulderAbduction’, ‘RangeElbowFlexion’, ‘MaxShoulder-
Flexion’, statistics of joint angles as the top three, most important features to assess the post-stroke
survivor’s quality of motion at Figure 1a. The radar chart describes the differences in identified
feature values on post-stroke survivors’ unaffected and affected sides.

The counterfactual explanations describe what changes in feature values lead to updating an Al
output in a certain way [12, 24, 47]. To generate counterfactual explanations, we applied the model
agnostic approach that utilizes the genetic algorithm [24, 47, 51] to find only three counterfactuals
close to the query point. In addition, we specified the features to be changed in the DiCE library
using the identified salient features by the SHAP library and their desired range using patients’
held-out normal data to avoid generating varying and unfeasible explanations.

For the presentation of counterfactual explanations, as we already had a radar chart visualization
to describe the comparison between unaffected and affected sides of a post-stroke survivor, we
generated textual descriptions of the changes in feature values and Al outputs (Figure 1b). For
instance, Figure 1b shows that the value of ‘MaxShoulderAbduction’ and RangeElbowFlexion’ should
be reduced to 0.65 and 0.19 respectively to update the output, predicted score of Al from 2 (i.e. full
range of motion - ROM) to 0 (i.e. limited ROM).

3.3 Conditions & Task Specifications

3.3.1 Conditions.

In this work, we specified two conditions with two different AI explanations to understand their
effects on the participants’ decision-making task, the rehabilitation assessment of the post-stroke
Survivors.

e The first, baseline condition refers to an Al-based decision support system that presents
videos of post-stroke survivor’s exercises along with Al prediction scores and salient feature
analysis (Figure 1b without what-if explanations).

o The second condition refers to the Al system that includes additional counterfactual explana-
tions (Figure 1b) compared to the first condition.

In this work, we leverage feature-based explanations for therapists to find evidence and confirm
their hypothetical assessment [63]. In addition, we explore counterfactual explanations for avoiding
therapists’ early confirmation [63] and inducing more analytical reviews on an Al output to
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reduce overreliance on Al. As previous work describes therapists preferred to review feature-based
explanations to find evidence and confirm their assessment [41], we consider that features-based
explanations are required by default for therapists to find evidence and confirm their assessment.
In addition, counterfactual explanations are required as additional information that serves as a
cognitive forcing function to reduce overreliance on Al Thus, we included both salient feature
analysis and counterfactual explanations in the second condition and compared the first and second
conditions to understand the effect of counterfactual explanations on users’ overreliance on Al.

In the study, we referred to interfaces as “Condition A” and “Condition B” to avoid biasing
participants. We referred to these conditions respectively as the Al with salient features and the
Al with counterfactual explanations for clarity throughout the paper. We implemented the web
interface of each condition using the Gradio library [1] to conduct the user study. By default, our
web interface involves three strategies of cognitive forcing functions [10] on both Condition A and
Condition B to reduce overreliance on AL Specifically, we implemented the tab menus of “Without
Explanations’ and "With Explanations’ (Figure 1), so that an Al output is not shown to the users
from the beginning and allows a user to review Al outputs and explanations and update or confirm
their assessment afterward [10]. In addition, our interface takes around a second to load an Al
output and Al explanations instead of explicitly setting 30 seconds of waiting time [10]. Compared
to Condition A, we included counterfactual explanations in Condition B and explore the effect of
counterfactual explanations as a cognitive function.

3.3.2  Task Specifications.

To investigate the effect of Al explanations on users’ overreliance on ‘wrong’ Al outputs, we
utilized the trained ML models (Section 3.2.2) to select the cases of rehabilitation assessment for
each condition. Specifically, we assigned cases with 3 ‘right’ Al outputs and 5 ‘wrong’ Al outputs
on each condition.

3.4 Participants & Procedure

3.4.1 Participants.

Seven therapists (3 male and 4 female) with an average of 12.85 years of experience in stroke
rehabilitation (Table 1). In addition, we recruited ten laypersons (7 male and 3 female; 2 graduate
students and 8 undergraduate students) without experience in stroke rehabilitation to compare their
performance [50] and reliance on Al with expert therapists. Participants were recruited through
advertisements sent to hospitals, university staff & mailing lists, and the contacts of the research
team.

Among the seven therapists, five of them are occupational therapists whose primary roles
are to help patients better engage in their daily activities. The two remaining therapists are
physiotherapists who treat their patient’s physical impairments from a bio-mechanical perspective.
The detailed demographic information of participants is described in the Appendix (Table 5).

To understand the participant’s background in technology, we asked them to respond to a set of
technical experience questions, which were based on survey questions designed by the Center for
Research and Education on Aging and Technology Enhancement (CREATE) [17]. Each participant
rated his or her experience with diverse recent technologies (i.e. computer/laptop, activity tracker,
virtual voice assistant, unmanned convenient store, autonomous vehicle) on a 7-point scale (1 =
strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 = neutral, 5 = somewhat agree, 6 = agree, 7
= strongly agree. A low score on technology experience (e.g. 1.0) indicates that a participant barely
has experience with recent technologies. Overall, therapists have diverse levels of experience with
recent technologies with an average score of 3.94 out of 7.0 and laypersons have a slightly higher
average score of 5.2 out of 7.0.
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Table 1. Demographics of participants (therapists and laypersons).

ID Role Years in the Role Q. Tech Experience ‘ ID Q. Tech Experience
T1 Occupational Therapist (OT) 25 2.6 +/- 2.0 L1 6.6 +/- 0.5
T2 Occupational Therapist (OT) 5 5.4 +/-2.2 L2 5.8 +/- 0.7
T3 Occupational Therapist (OT) 10 4.0 +/-2.4 L3 5.0 +/- 1.7
T4 Occupational Therapist (OT) 6 3.6 +/- 2.8 L4 5.6 +/- 1.5
T5 PhysioTherapist (PT) 17 3.6 +/- 2.3 L5 3.0 +/- 2.1
T6 Occupational Therapist (OT) 12 5.2 +/-2.1 L6 6.0 +/- 0.0
T7 PhysioTherapist (PT) 15 3.2+/-1.0 L7 4.6 +/- 2.6
L8 5.0 +/- 1.3
L9 5.2 +/-1.9
L10 5.2 +/-1.8

3.4.2 Procedure.

The study was conducted online. After a participant completed the informed consent form that
was approved by the Institutional Review Board, the participant went through the tutorial on
rehabilitation assessment and the study procedure. Each participant was randomly assigned to
either first use the Al with salient feature analysis (Condition A - Features) and then Al with
salient features and counterfactual explanations (Condition B - Countfacts) or vice-versa. Each
condition involves two sub-tasks. Specifically, we asked the participant to (a) first provide their
initial assessment (Figure 1a) without Al outputs and explanations and (b) then finalized the
assessment after reviewing Al outputs and explanations to understand the effect of reviewing Al
outputs and explanations (Figure 3). In each condition, a participant was required to perform 8
decision-makings on rehabilitation assessment after reviewing post-stroke survivor’s exercises.
The sub-tasks of each condition were counterbalanced and the order of the two conditions and the
presentations of post-stroke videos were randomized. After completing assessment tasks on each
condition, the participant responded to the usability questions. After finishing all tasks on two
conditions, the participant filled out the overall preference questionnaire. All participants received
a fixed compensation for their participation in the study.

Condition A Condition B
é A A ™
Traditional Al Explanation Traditional Al Explanation v Usability Survey
[ [ (Video only) 1 | (video only) 2 | Post-survey
Participant Sub-Task 1 Sub-Task 2 Sub-Task 3 Sub-Task 4

Fig. 3. The overall procedure of the user study: a participant completed rehabilitation assessment tasks using
the Al with salient features (Condition A) and the Al with salient features and counterfactual explanations
(Condition B). In each condition, the participant first completed the initial assessment after reviewing only a
video and then provided the final assessment after reviewing the Al outputs and explanations. When the
participant completed the tasks on each condition, the participant completed the usability questionnaires
on each condition. At the end of the study, the participant completed the overall, post-survey about their
preferences.
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3.5 Data Analysis Metrics

We analyzed two systems (i.e. Al with salient feature analysis and Al with counterfactual ex-
planations) using the following metrics: 1) performance and 2) participants’ agreement level on
rehabilitation assessment tasks, 3) counts of ‘right’ and ‘wrong’ decisions (including overreliance),
4) the duration of decision-making tasks, and 5) usability questionnaires [11, 37, 42].

3.5.1 Performance.

One of the most commonly used metrics on human-AI collaborative decision-making tasks is
performance, measuring the percentage of correctly making decisions on instances [37]. In this
study, we utilized the annotations of a therapist from the dataset [40] as ground truths and eval-
uate participants’ performance on decision-making tasks before/after reviewing Al outputs and
explanations.

3.5.2 Agreement Level.

Most medical diagnoses rely on standardized guidelines [23, 26, 60]. However, clinicians can be
biased in their decision making and expert disagreement is prevalent in medical decision-making
tasks [7, 33, 34]. Thus, we also analyzed the agreement level of participants’ decisions before/after
reviewing Al outputs and explanations.

3.5.3 Counts of ‘right’ and ‘wrong’ decisions.

In addition to the performance and agreement level, we analyzed the counts of ‘right’ and ‘wrong’
decisions by participants to further analyze their overreliance on ‘wrong’ Al outputs. Also, we
measured the count of (1) agreeing with ‘right” Al outputs, (2) rejecting ‘wrong’ Al outputs, (3)
agreeing with ‘wrong’ Al outputs (i.e. overreliance), and (4) rejecting ‘right” Al outputs for further
analysis. In addition, we analyzed the number of times when Al explanations assisted participants
to change and make ‘right’ or ‘wrong’ decisions.

3.5.4 Duration of Decision Making.
Our web interface measured the estimated duration of each decision-making by asking the partici-
pants to indicate their starting point of a decision-making task on the interface.

3.5.5 Usability Questionnaires.

We also utilized participants’ self-reported, subjective responses on usability aspects of the systems
with salient feature analysis and counterfactual explanations, building upon previous research of
human-AI collaborative decision-making in health [14, 37, 41]. Specifically, these usability aspects
include (1) Useful, (2) Insight, (3) Effort, (4) Transparent, (5) Trust, (6) Frustration, (7) Usagelntent,
(8) AlPotential and (9) Preference between two interfaces as follows:

o Useful: “The system provided useful information to understand patient’s performance for assess-
ment” [14, 41].

o Insight: “The system provided new insights on patient’s performance for assessment” [41].

o LessEffort: “The system helped me think through and complete the assessment tasks with less
effort” based on the effort dimension of the NASA-TLX [25]

o Reliance: T relied on assessment scores & analysis from the system for my final assessment”

e Transparent: “The system was transparent about why it provided a particular assessment score”

o Trust: T can trust the provided assessment scores or/and analysis from the system”

e Frustration: ‘T was insecure, discouraged, and stressed while using the system” based on the
frustration dimension of the NASA-TLX [25]

o Usagelntent: ‘T would use this system to understand and assess patient’s exercise performance
in practice” [14, 41].

o AlPotential: ‘T think Al data-driven tool can improve rehabilitation assessment”
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e Preference between two interfaces: participants rated on a 7-point scale ranging from 1
(totally Condition A), 2 (much more Condition A than B), 3 (slightly more Condition A than
B), 4 (neutral), ..., 7 (totally Condition B) [14, 41].

All questionnaires were rated on a 7-point scale except for the trust, which was rated on a
100-point scale.

4 RESULTS

Throughout this paper, we refer to the outcomes of participants, who reviewed the videos without
Al outputs and explanations as “Human” and those , who reviewed the videos with Al outputs and
explanations as “Human + AI”. Also, we refer the Condition A as “Features”, in which participants
use the Al with salient feature analysis and the Condition B as “Counterfacts”, where participants
use the Al with salient features and counterfactual explanations.

For the performance and agreement level metrics, we analyzed the differences in outcomes
between “Human” and “Human + AI” over two conditions. For the counts of ‘right’ and ‘wrong’
decisions, duration of decision makings, and usability questionnaires, we compared the outcomes of
two conditions using Al with salient feature analysis and counterfactual explanations respectively.

In the following section, we reported the descriptive statistic of each metric and conducted the
Wilcox significant tests using data from therapists and laypersons respectively. If outcomes from
therapists and laypersons have the same trends, we also described the overall outcomes of data
analysis metrics.

4.1 Performance

Figure 4 summarizes the average performance (i.e. F1-score) of rehabilitation assessment tasks by
therapists (TPs) and laypersons (LPs) respectively.

Overall, therapists’ and laypersons” human + Al team performance with both salient feature
analysis and counterfactual explanations were lower than their human alone performance (p < 0.05)
except for a marginal improvement of therapists’ human + Al team performance. For further
analysis, we analyzed the performances of therapists and laypersons using the cases with ‘right’ or
‘wrong’ Al outputs. When ‘right’ Al outputs were presented to therapists and laypersons, therapists’
human + Al team performance with counterfactual explanations and laypersons’ human + Al team
performance with salient features were higher than their human alone performance (p < 0.1 and
p < 0.05 respectively). However, when ‘wrong’ Al outputs were presented to the therapists and
laypersons, their human + Al team performance with salient features or counterfactual explanations
was decreased. Compared to the therapists’ performances, laypersons’ performances were degraded
significantly. Also, we found that therapists’ and laypersons’ human + Al team performances with
salient features (i.e. 8.6 and 18.0 F1-scores respectively) led to higher performance degradation than
their performance with counterfactual explanations (i.e. 2.8 and 14.0 F1-scores respectively).

4.2 Agreement Level

Figure 5 summarizes an average agreement level (e.g. F1-score) of rehabilitation assessment tasks
by therapists (TPs) and laypersons (LPs) respectively.

Overall, both TPs and LPs increased their agreement level when they reviewed Al outputs (Human
+ Al) of salient features (p < 0.05) and decreased their agreement level when they reviewed Al
outputs of counterfactual explanations.

For the cases with ‘right” Al outputs, both TPs and LPs achieved higher agreement levels with
statistical significance (p < 0.05 and p < 0.01 respectively) when they used salient features.
Also, they achieved higher agreement levels without significance when they used counterfactual
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Fig. 4. Performance of rehabilitation assessment tasks by therapists (TPs) and laypersons (LPs) using Al with
Features and Counterfactuals for (1) all cases, (2) cases with ‘right’ Al outputs, and (3) cases with ‘wrong’ Al
outputs. Although participants’ performances improved after reviewing ‘right” Al outputs with both salient
feature analysis and counterfactual explanations, their performance reduced after reviewing ‘wrong’ Al
outputs. Counterfactual explanations assisted participants to have lower degraded performance than salient
feature analysis. *, **, and *** indicate 90%, 95%, and 99% statistical significance levels.

explanations. For the cases with ‘wrong’ Al outputs, they increased their agreement levels (i.e. by
1.4 F1-score for TPs; by 8.0 F1-score for LPs) when they reviewed salient features. In contrast, they
decreased their agreement levels when they reviewed counterfactual explanations. Similar to the
performance metrics, an agreement level of TPs using counterfactual explanations (counterfacts) led
to lower degradation of the agreement level (i.e. -7.9% F1-score) than that of LPs using counterfacts
(i.e. a —15.25% F1-score, p < 0.01).

4.3 Counts of ‘Right’ and ‘Wrong’ Decisions

Figure 6 summarizes the counts of participants’ ‘right’ and ‘wrong’ decisions. Overall, the human +
Al team with counterfactual explanations by therapists (TPs) and laypersons (LPs) had more cases
of ‘right’ decisions than the human + Al team with salient feature analysis: 21% (29 out 136) from
all participants (p < 0.01), 8% (5 out of 56) from TPs (p < 0.1), and 30% (24 out of 80) from LPs
(p < 0.01). In addition, the human + Al team with counterfactual explanations had fewer cases of
‘wrong’ decisions than the human + Al team with salient feature analysis: 21% (29 out 136) from
all participants (p < 0.01), 8% (5 out of 56) from TPs (p < 0.1), and 30% (24 out of 80) from LPs
(p < 0.01).

For the detailed analysis, we analyzed the number of ‘right’ and ‘wrong’ decisions of TPs and LPs
by (1) agreeing with 'right” Al outputs, (2) rejecting *wrong’ Al outputs, (3) agreeing with ‘wrong’
Al outputs, and (4) rejecting ‘right’ Al outputs (Figure 7). The human + Al team with counterfactual
explanations had more cases of rejecting ‘wrong’ Al outputs and fewer cases of agreeing with
‘wrong’ Al outputs than the human + Al team with salient features: by 19% (11 out of 56) from TPs
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Fig. 5. Agreement level of rehabilitation assessment tasks by therapists (TPs) and laypersons (LPs) using Al
with Features and Counterfactuals for (1) all cases, (2) cases with ‘right’ Al outputs, and (3) cases with ‘wrong’
Al outputs. After reviewing ‘right’ Al outputs with salient feature analysis or counterfactual explanations,
both TPs and LPs increased their agreement levels. After reviewing ‘wrong’ Al outputs, both TPs and LPs
using salient features increased their agreement levels while TPs and LPs using counterfactual explanations
decreased their agreement levels. *, **, and *** indicate 90%, 95%, and 99% statistical significance levels.

and by 35% (28 out of 80) from LPs. In addition, the human + Al team with Counterfacts had fewer
cases of agreeing with ‘right’ Al outputs and more cases of rejecting ‘right’ Al outputs than the
human + Al team with Features: by 10% (6 out of 56) from TPs and by 5% (4 out of 80) from LPs.

4.4 Duration of Decision Making

The participants took an average of 57 seconds (All), 49 seconds (TPs), and 63 seconds (LPs) using
the system with salient feature analysis and an average of 75 seconds (All), 70 seconds (TPs), and
80 seconds (LPs) using the system with counterfactual explanations to complete a single decision-
making task. Overall, the system with counterfactual explanations requires an average of 18 more
seconds (All), 21 more seconds (TPs), and 17 more seconds (LPs) than the system with salient
feature analysis on a decision-making task.

4.5 Usability Questionnaires

Figure 8 summarizes the usability responses by the participants using the system with (1) salient
feature analysis (Features) and (2) counterfactual explanations (Counterfacts).

The participants (both therapists and laypersons) considered that the system with Features is
more useful (p < 0.01), provides more insights without statistical significance, requires less effort
(p < 0.01), more reliable (p < 0.01), more transparent without statistical significance, more trustful
(p < 0.01), less frustrating (p < 0.01). Overall, they both expressed higher usage intent (p < 0.01)
and higher potential (p < 0.01) of the system with Features than the system with Counterfacts.

For the post-survey on the preference question, Table 2 describes that there are 7 participants,
who preferred the system with salient feature analysis (6 totally; 1 much more; 1 slightly more), 7
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Fig. 6. The counts of ‘right’ and ‘wrong’ decisions by all participants (All), therapists (TPs), and laypersons
(LPs). Counterfactual explanations assisted the participants to increase their ‘right’ decisions and reduce
their ‘wrong’ decisions compared to the salient feature analysis. * and *** indicates 90% and 99% statistical
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Fig. 7. Detailed analysis of (a) ‘right’ and (b) ‘wrong’ human decisions by all participants (All), therapists
(TPs), and laypersons (LPs): Counterfactual explanations assisted the participants to increase the number of
‘right’ decisions on rejecting ‘wrong’ Al outputs and reduce the number of ‘wrong’ decisions on agreeing

‘wrong’ Al outputs.
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participants, who preferred the system with counterfactual explanations (2 totally; 3 much more; 3
slightly), and 1 neutral.

Participants preferred to use the system with salient feature analysis as its visualization is “faster
to read and process information” (TP1) than textual, counterfactual explanations even if the other
system. Other participants preferred the system with counterfactual explanations because they
considered that these explanations assisted to “provide a second view to help assessment” (TP 2) and
‘confirm any doubt during the assessment” (TP 6).

B Human + Al (Features)
s Human + Al (Counterfacts)

* ko
6.12

Average Responses

\
é°

'\6}'\& &0
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Fig. 8. Participants’ usability responses on the system with (1) salient feature analysis (Features) and (2)
counterfactual explanations (Counterfacts). Overall, participants expressed higher usage intent and potential
with the system with salient feature analysis. They considered that the system with salient feature analysis is
considered to be more useful, provides more insights without significance, requires less effort on assessment, is
more reliable, transparent without significance, more trustful, and less frustrating. *** indicates 99% statistical
significance level.

Table 2. Participants’ preferences on the system: overall, there are 7 participants, who preferred version A,
salient feature analysis (6 totally, 1 much more, 1 slightly more), 7 participants, who preferred version B,
counterfactual explanations (2 totally, 3 much more, 3 slightly more), and 1 neutral.

(1) Totally ~ (2) Much more  (3) Slightly more (5) Slightly more  (6) Much more  (7) Totally

UserType version A version A than B version A than B (4) Neutral version B than A version B than A version B
Therapists 2 1 1 0 1 2 1
Laypersons 4 0 0 1 2 1 1

Overall 6 1 1 1 3 3 2
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5 DISCUSSION

In this section, we discussed the potential benefits and limitations of two types of Al explanations (i.e.
salient feature and counterfactual), their effects on domain experts and laypersons’ decision-making,
and suggestions for more effect human-Al collaborative, clinical decision-making.

5.1 Effects of Salient Feature & Counterfactual Explanations for Overreliance on Al

Al explanations have been considered as an important communication medium to realize effective
human-AI collaborative decision-making tasks [37, 42]. In contrast to prior research that describes
the improved performance of humans with Al explanations [38, 41], our results demonstrated that
the human + Al team with both salient feature and counterfactual explanations performed worse
than the human alone (Figure 4).

According to the further analysis of the cases with ‘right’ and ‘wrong’ Al outputs, the presentation
of Al outputs and explanations has different effects on the human + Al team performance (Figure 4).
Specifically, when ‘right” AT outputs are presented, the human + Al team with both salient feature
and counterfactual explanations performed better than the human alone. However, the human +
AJ team with salient feature explanations and counterfactual explanations performed worse than
the human alone.

Compared to the human + Al team with salient feature explanations, the human + Al team
with counterfactual explanations supported both therapists and laypersons to have more 'right’
decisions (21%: 29 out of 136) and fewer *wrong’ decisions (21%: 29 out of 136) (Figure 6). Overall,
our findings indicate user’s overreliance on ‘wrong’ Al outputs, which follows the previous studies
that describe salient feature explanations increases user’s overreliance on the Al model [6, 64]. In
addition, our results show that counterfactual explanations performed better than salient feature
explanations to assist reduce therapists’ and laypersons’ overreliance on Al.

When it comes to the agreement level, our results showed that the human + Al team with salient
feature analysis led to an increase in the agreement level on the cases with ‘right’ and ‘wrong” Al
outputs (Figure 5). However, we found that the increase in agreement level does not necessarily
indicate a positive performance improvement. Specifically, the counts of participants’ ‘right’ and
‘wrong’ decisions (Figures 6 and 7) indicated that the human + Al team with salient feature analysis
had more ‘wrong’ decisions while having a lower number of rejecting ‘wrong’ Al outputs and
a higher number of agreeing ‘wrong’ Al outputs than the human Al team with counterfactual
explanations. Taken together, our findings show that counterfactual explanations can serve as a
cognitive forcing function [10] that assists the users in analytically reviewing Al explanations and
reducing their overreliance on ‘wrong’ Al outputs.

5.2 Domain Experts vs Laypersons

Among various data analysis metrics, we found that both therapists and laypersons had mostly the
same outcome patterns in performance, agreement level, counts of ‘right’ and "wrong’ decisions,
duration of decision-making, and usability responses. However, our results suggest that laypersons
had a higher over-reliance on Al outputs than therapists.

Specifically, when ‘wrong’ Al outputs were presented, laypersons had much higher performance
degradation by 18.0 f1-score with salient feature explanations and 14.0 f1-score with counterfactual
explanations than therapists who had a performance degradation of 8.6 f1-score with salient feature
explanations and 2.8 f1-score with counterfactual explanations. In addition, this over-reliance on
‘wrong’ Al outputs has shown more significance with laypersons than domain experts, therapists.
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5.3 Towards Better Calibrated Trust and Evaluation Metrics on Al

Similar to the previous research [11], our study also shows a positive correlation between user’s
trust and reliance: the more a user trusts the system, the more the user is likely to over-rely on
outputs of the system even when ‘wrong’ Al outputs are presented. Although we provided the
same number of ‘right’ and ‘wrong’ Al outputs on two systems with salient feature analysis and
counterfactual explanations, participants considered that the system with salient feature analysis
“is more accurate” (TP 6) than the system with counterfactual explanations.

Overall, participants expressed that they had a higher, self-reported trust score and a higher
reliance score on the system with salient feature analysis than the system with counterfactual
explanations. In particular, the trust score of the system with salient feature analysis is 73.76 out of
100 and that of the system with counterfactual explanation is 45.20 out of 100.

As our task specification (Section 3.3.2) includes 3 ‘right’ and 5 ‘wrong’ Al outputs, the ideal
estimation of an ML performance is 0.375 (3 out of 8). The participants using the system with
neither explanation exactly estimated the performance of an ML model. However, the trust score
of the system with counterfactual explanation is much closer than that of the system with salient
feature analysis. Thus, this finding suggests that counterfactual explanations also have the potential
to assist a user in better evaluating and estimating the accuracy of an ML model.

In addition, our findings suggest that possible gaps between users’ perceived benefits and actual
trustworthiness of an Al system. Relying only on subjective usability responses [37] might be limited
and does not provide an appropriate understanding and evaluation on the trustworthiness of an Al
system. In other words, an Al system with a higher self-reported trust score by participants does
not necessarily mean that the system would achieve human + Al complementary team performance.
It is important to explore a way or metrics to more accurately evaluate the trustworthiness and
effectiveness of Al systems in the future.

5.4 Limitations

Our results demonstrated the potential of the human + Al team with counterfactual explanations to
reduce the overreliance on Al and make the users better estimate the accuracy of an Al model during
human-AI collaborative decision-making using uncontrolled AI outputs and explanations that are
more stochastic. However, participants had lower usage intent and expected lower potential of the
Al system with counterfactual explanations as reviewing a counterfactual explanation presented in
texts “could be more confusing” (T1) and “take more effort to complete the assessment” (T4).

As previous research shows the higher understandability of counterfactual explanations by
clinicians by including visual graphics than textual descriptions [49], we believe our limited
scores of usability aspects on counterfactual explanations might be overcome by exploring new
visualizations and human-centered design of Al explanations [21, 28].

As this work primarily focuses on exploring the effect of counterfactual explanations on user
trust, the experimental designs of this work do not consider the possible effect of explanation
fidelity. It is important to further investigate the effect of explanation fidelity on user trust [53] and
overreliance. In addition, an additional study is required to investigate how people can effectively
evaluate the performance and trustworthiness of an ML model and calibrate their trust and reliance
to improve human-Al/algorithm interaction [22].

Our work also has a limitation in its generalizability as our work does not involve a large
number of participants. However, such a small sample size is not unusual in similar previous works
[11, 41]. In addition, this study mainly explores our research question in the context of a single
clinical decision-making task (i.e. rehabilitation assessment) and is limited by particular types and
visualization formats of Al explanations and an ML model (i.e. a feed-forward neural network). It
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is required to conduct additional studies to explore other decision-making tasks and types of ML
models, explanations, and visualizations [21, 28] for further generalization of our findings.

6 CONCLUSION

In this work, we contributed to an empirical study of analyzing the effect of the salient feature and
counterfactual explanations on users’ trust and reliance on Al during a human-AlI collaborative
clinical decision-making task (i.e. assessing post-stroke survivor’s quality of motion). Our results
showed that the humans + Al team with both salient feature and counterfactual explanations
increased its performance on decision-making tasks only when ‘right’ Al outputs are presented
and decreased its performance when ‘wrong’ Al outputs are presented. Our results demonstrated
that counterfactual explanations assisted the participants to reduce their overreliance on ‘wrong’
Al outputs (21 %) compared to salient feature explanations. Also, we found that laypersons had
higher performance degradation and overreliance than domain experts, therapists. Taken together,
our work brings to light that providing AI explanations does not necessarily indicate improved
human-AI collaborative decision-making. This work discusses the potential of counterfactual
explanations to improve analytical reviews on Al outputs to better estimate Al performance and
reduce overreliance on Al with the cost of cognitive burdens and other implications for improving
human-AlI collaborative decision-making.
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Table 3. Guidelines to Assess Stroke Rehabilitation Exercises

Performance
Score Guidelines
Components
0 Does not or barely involve any movement
Range of Movement Y mvove atly move PR
(ROM) 1 Less than half way aligned with an Target’ position
2 Movement achieves an ‘Target’ position
0 Noticeable compensation in more than two joints
Compensation 1 Noticeable compensation in a joint
2 Does not involve any compensations

Table 4. Parameters of Machine Learning Models (i.e. Feed-Forward Neural Network Models)

Hidden Layers and Units / Learning Rate
ROM Comp
E1 (256)/0.005 (16, 16) / 0.01

Table 5. Detailed Demographics of Therapists (T1- T7) and Laypersons (L1 - L10)

ID Gender Age Q. Tech Experience Occupation Years in the Role
T1 Female 45 - 54 years 2.6 +/-2.0 Occupational Therapist (OT) 25
T2 Female 25 - 34 years 5.4 +/-2.2 Occupational Therapist (OT) 5
T3 TFemale 25 - 34 years 4.0 +/-24 Occupational Therapist (OT) 10
T4  Male 25 - 34 years 3.6 +/- 2.8 Occupational Therapist (OT) 6
T5 Male 35 - 44 years 3.6 +/- 2.3 PhysioTherapist (PT) 17
T6 Female 25 - 34 years 5.2+/-21 Occupational Therapist (OT) 12
T7  Male 35 - 44 years 3.2+/-1.0 PhysioTherapist (PT) 15
L1 Female 25-34years 6.6 +/- 0.5 Graduate Student

L2 Female 25-34years 5.8 +/- 0.7 Graduate Student

L3  Male 18-24years 5.0 +/- 1.7 Undergraduate Student

L4  Male 18-24years 5.6 +/- 1.5 Undergraduate Student

L5  Male 18-24years 3.0 +/- 2.1 Undergraduate Student

L6  Male 18- 24 years 6.0 +/- 0.0 Undergraduate Student

L7  Male 18-24years 4.6 +/- 2.6 Undergraduate Student

L8  Male 18 -24years 5.0 +/- 1.3 Undergraduate Student

L9  Male 18-24years 5.2+/-1.9 Undergraduate Student

L10 Female 18- 24 years 5.2 +/-1.8 Undergraduate Student
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