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ABSTRACT
Artificial intelligence (AI) and machine learning (ML) algorithms
are increasingly being explored to support various decision-making
tasks in health (e.g. rehabilitation assessment). However, the devel-
opment of such AI/ML-based decision support systems is challeng-
ing due to the expensive process to collect an annotated dataset.
In this paper, we describe the development process of a human-AI
collaborative, clinical decision support system that augments an
ML model with a rule-based (RB) model from domain experts. We
conducted its empirical evaluation in the context of assessing phys-
ical stroke rehabilitation with the dataset of three exercises from 15
post-stroke survivors and therapists. Our results bring new insights
on the efficient development and annotations of a decision support
system: when an annotated dataset is not available initially, the RB
model can be used to assess post-stroke survivor’s quality of motion
and identify samples with low confidence scores to support efficient
annotations for training an ML model. Specifically, our system re-
quires only 22 - 33% of annotations from therapists to train an ML
model that achieves equally good performance with an ML model
with all annotations from a therapist. Our work discusses the values
of a human-AI collaborative approach for effectively collecting an
annotated dataset and supporting a complex decision-making task.
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1 INTRODUCTION
Recent advances in artificial intelligence (AI) have made it applica-
ble to support decision-making in healthcare [6, 12, 14, 42]. Specifi-
cally, researchers have explored the feasibility of clinical decision
support systems that analyze a large amount of data using AI tech-
niques and provide supplementary information as a secondary set of
perspectives to enhance the accuracy and efficiency of a clinician’s
decision making [13].

Clinical decision support systems can be categorized as either
a rule-based system [3, 10, 41, 55] or a machine learning-based
system [6, 12, 22, 39, 53], depending on its data analytic techniques.
A rule-based system requires the engagements with clinicians (e.g.
semi-structured interviews) to capture and translate their knowl-
edge into a set of rules [41, 55]. This rule-based system has the
benefit of being interpretable and flexible. However, it remains
challenging to elicit a global set of rules that represent the knowl-
edge of clinicians on a complex decision-making task [41, 49]. In
contrast to a rule-based system that relies on inputs from clini-
cians, a machine learning (ML)-based system utilizes an ML algo-
rithm to automatically extract patterns from annotated data on a
decision-making task. Specifically, significant recent research has
been devoted to exploring a deep neural network in clinical appli-
cations (e.g. cancer diagnosis [20] and rehabilitation assessment
[39, 48]). As researchers have demonstrated that an ML-based sys-
tem is competent to perform a task that requires clinician expertise
[20, 39], researchers have also explored the feasibility to integrate
this system into practice.
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Although ML-based systems have shown competitive perfor-
mance, prior work describes the difficulty to integrate these sys-
tems into practice due to the lack of human-centered designs as
a primary reason for failure [13, 31, 40, 60] and performing as a
black-box system [52]. To address this latter issue, researchers have
actively explored a method or tool to provide explanations on the
predictions of anML-based system [25, 40, 43, 50]. In addition, there
is growing human-computer interaction research that involves the
end-users to understand their practices and needs [13, 40, 60] and
socio-environmental factors [6] for the design and evaluation of
a system. Yet, most prior work assumes to have a large amount
of annotated data [24] to develop an ML-based system. There is
a limited exploration on how to support an expensive process to
collect annotated data.

In this paper, we present a human-AI collaborative, clinical deci-
sion support system that combines a machine learning (ML) model
with a rule-based (RB) model as a hybrid model (HM) to assist the
assessment of a post-stroke patient’s quality of motion (Figure 1).
We contribute to empirical research that brings insights on the de-
velopment process of a system and the value of RB and HM models
to support efficient annotations for training an ML model.

As an ML model typically requires a large amount of annotated,
training data [24], this system first leverages an RB model from
therapists to assess the quality of patient’s rehabilitation exercises
and identify samples with low confidence scores. Instead of anno-
tating all samples, a therapist can review quantitative assessment
on a patient’s exercise from the system (Figure 2) and annotate
samples with low confidence scores. Once the annotated dataset
is collected, this system trains an ML model and integrates it with
a rule-based model as a hybrid model. This hybrid model can not
only derive generic insights from data with an ML model, but also
provide an opportunity for user engagement with an RB model for
human-AI collaborative decision-making [42].

For the evaluation, we utilized the dataset of three upper-limb
rehabilitation exercises from 15 post-stroke patients and 11 healthy
participants [39]. Given this dataset, we compared the training of a
machine learning (ML) model (i.e. a neural network) through leave-
one-patient-out cross-validation using the full annotations from
a therapist and the annotations from our human-AI collaborative,
clinical decision support (HAC-CDS) system. For the annotations
of our HAC-CDS system, we developed a rule-based (RB) model
with 15 independent if-then rules from the interviews with thera-
pists [41]. We then recruited five therapists to annotate patient’s
exercises with low confidence scores from the RB model. Our ex-
perimental results show that our system requires only 22 - 33% of
total annotations (i.e. an average of 103 - 140 annotations) to train
an ML model that achieves similar performance with an ML model
with the full annotations.

Overall, this work advances ongoing discussions around human-
AI collaborative decisionmaking in high-stakes domains (e.g. health)
[13, 42, 43]. Specifically, this work proposes a human-AI collabora-
tive approach for efficient annotations to develop a clinical decision
support system and contributes to its empirical evaluation in the
context of physical stroke rehabilitation assessment. Our results
provide new insights on the efficient development of a human-
AI collaborative, decision support systems in high-stake domains:

at the beginning of developing these systems, we recommend re-
searchers engaging with domain experts to develop an interpretable,
rule-based (RB) model [41, 43, 49] and utilize it to support efficient
annotations for training an ML model. In addition, after collecting
an annotated dataset, we discuss the potential of integrating an ML
model with an RB model as a hybrid model to support human-AI
collaborative decision making in high-stake domains [42].

2 RELATEDWORK
2.1 Opportunities & Challenges of Decision

Support Systems
Machine learning (ML) algorithms are increasingly being explored
to support human decision-making in high-stakes situations, such
as public services, criminal justice, and health [6, 12, 14, 18, 30, 36].
Following prior research that describes the potential of ML algo-
rithms to outperform human experts on prediction tasks [17, 20, 34,
39], researchers have investigated the feasibility of deploying these
ML-based decision support systems to improve decision makings.
However, the development and integration of these systems in prac-
tice remain a challenge due to the lack of human-centered designs
and performing as a "black-box" system [11–13, 17, 21, 31, 40, 60].

To support understanding of the predictions of an ML-based sys-
tem, researchers have actively explored a method [8, 33, 40, 50] or a
visualization tool [25] to provide explanations on the prediction of
an ML-based system. In addition, there is increasing recent research
efforts [6, 13, 21, 40, 54, 60] that highlight the importance of involv-
ing stakeholders to understand their practices and needs [13, 40, 60]
and socio-environmental factors [6] for the design and evaluation
of a system. Yang et al. conducted a field evaluation on the design
of a clinical decision support tool for cardiologists with synthetic
data and found that clinicians are more likely to embrace a tool that
augments their decision-making in natural and intuitive ways [60].
Lee et al. [40] conducted interviews and focus-group sessions with
therapists to understand the challenges and needs during rehabil-
itation assessment to design a human-centered, clinical decision
support system. In addition, researchers discuss the necessity of
evaluating a system in socio-technical contexts [6, 21], and creating
ongoing feedback loops with stakeholders [54]. As the predictions
of machine learning algorithms cannot be perfect [12], De-Arteaga
et al. highlighted the importance of making a human-in-the-loop
pipeline to avoid harmful effects from erroneous algorithmic rec-
ommendations instead of relying on a fully automated approach
[17].

While these prior studies provide new perspectives on the neces-
sity of engaging the stakeholders for human-centered algorithmic
decision-making [56], these studies assume to have a large amount
of annotated data [24] to develop an ML-based system. There has
been limited exploration of how such a human-in-the-loop pipeline
can be developed and how to support an expensive process to collect
annotated data. In this work, we focus on a decision-making task on
physical stroke rehabilitation assessment [57, 58] and explore the
development of a human-AI collaborative, clinical decision support
system and its effectiveness to collect an annotated dataset.
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Figure 1: Flow diagram of a human-AI collaborative, clinical decision support system for physical stroke rehabilitation assess-
ment. This system integrates a machine learning (ML) model with a rule-based (RB) model as a hybrid model to assess the
quality of patient’s rehabilitation exercises. After reviewing quantitative analysis on patient’s exercises from the system, a
therapist can provide annotations to further improve the system. Initially, this system will operate with only an RB model
from therapists to facilitate the annotations. Once the annotated dataset is collected, this systemwill train amachine learning
model and integrate it with a rule-based model as a hybrid model for human-AI collaborative decision making.

Figure 2: The visualization interface of the proposed system that presents (a) the video of patient’s exercise motions and the
quantitative assessment on patient’s quality of motion and (b) trajectory trends between unaffected and affected sides.
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2.2 Technology-Assisted Rehabilitation
Assessment

Physical rehabilitation is one of the effective treatment approaches
for musculoskeletal and neurological disorders (e.g. stroke) [47].
During rehabilitation, therapists utilize clinical tests that require
their direct observation on patient’s exercises to understand the
patient’s status and prescribe an intervention [57, 58]. Although
rehabilitation assessment is important to determine a customized
intervention of a patient, it is infrequently performed due to the
therapist’s limited availability [45]. Therapists often encounter diffi-
culty with making an informed decision on patient’s rehabilitation
[5, 27].

Researchers have explored an approach of automatically moni-
toring and assessing patient’s exercises with machine learning and
sensors to improve current practices of rehabilitation [59]. One ap-
proach is a rule-based model, in which a set of monitoring rules is
elicited from domain experts. For instance, Lee et al. compared the
positions of wrist and spine joints to monitor the completion of an
upper-limb rehabilitation exercise [41]. This rule-based approach
can be flexible to develop a customized model. However, it remains
challenging to enumerate a global set of rules to represent experts’
complex decision-making processes. An alternative approach is to
utilize machine learning algorithms with labeled sensor data and
learn a model to assess the quality of motion [39, 48]. For example,
Das et al. applied Support Vector Machine (SVM) to distinguish
mild and severe symptoms of Parkinson’s Disease using full-body
motion capture data from four Parkinson’s patients [16]. However,
the development of these ML model requires an annotated dataset
[24], which is labor-intensive [15].

Instead of relying on either a rule-based (RB) model or a machine
learning (ML) model alone, we present a human-AI collaborative,
clinical decision support system that combines an ML model with
an RB model to assess the quality of post-stroke patient’s rehabilita-
tion exercises. Initially, when an annotated dataset is not available,
this system operates with an RB model to predict the assessment
on the quality of motion and identify samples with low confidence
scores. Therapists then leveraged these confidence scores to pri-
oritize which samples to annotate. When the annotated dataset is
collected, our system trains an ML model and integrates it with the
RB model to exploit the strength of both ML and RB models and
support human-AI collaborative decision-making [42].

Human-in-the-loop, interactive ML approaches have been ac-
tively explored by researchers to create a better ML model with
improved performance and user acceptance [1, 12, 37, 42] and im-
prove the annotations [28, 32, 35]. Prior work shows the feasibility
of presenting relevant information of a task and acquiring inputs of
a user (e.g. constraints of a model [29] or feature relevance [37, 42])
to refine an ML model. In addition, researchers have discussed the
importance of iterating on data (e.g. collecting new data or labels)
[26] and explored interactive approaches for annotations in various
applications: sound event detection [32], semantic annotations [35],
and animal behavior [28]. This work contributes to the empirical
research on the development of a human-AI collaborative, decision
support system that integrates an ML model with an RB model
and evaluation of its efficiency for annotations in the context of
assessing physical stroke rehabilitation exercises.

3 STUDY ON PHYSICAL STROKE
REHABILITATION ASSESSMENT

This work focuses on the application of assessing physical stroke
rehabilitation exercises, which is a major part of patient care for
stroke, a common and disabling global healthcare problem [38]. In
this section, we describe the designs of our study to assess physical
stroke rehabilitation that includes three upper-limb exercises and
kinematic features to represent the quality of motion.

3.1 Three Task-Oriented Upper Limb Exercises
This work utilizes three upper-limb physical stroke rehabilitation
exercises, recommended by therapists [39]. The first exercise (Ex-
ercise 1) is called “Bring a cup to the mouth”. For Exercise 1, a
post-stroke survivor has to raise the post-stroke survivor’s wrist
to the mouth as if drinking water. The second exercise (Exercise 2)
is referred to as “Switch a Light on”. For Exercise 2, a post-stroke
survivor has to raise the post-stroke survivor’s hand forward as if
touching a light switch on the wall. The third exercise (Exercise 3) is
“Move a cane forward”. For Exercise 3, a post-stroke survivor has to
practice the usage of a cane by extending the post-stroke survivor’s
elbow in the seated position. These exercises are selected due to
their correspondence with major motion patterns: elbow flexion
for Exercise 1, shoulder flexion for Exercise 2, elbow extension for
Exercise 3.

3.2 Performance Components and Kinematic
Features

This work leverages a Kinect v2 sensor (Microsoft, Redmond, USA)
to track the joint positions of a post-stroke survivor while perform-
ing an exercise and extracts various kinematic features to represent
the quality of motion [39, 51, 57, 58]. Specifically, this work assesses
the post-stroke survivor’s quality of motion in terms of the follow-
ing three performance components: the ‘Range of Motion (ROM)’,
“Smoothness”, and “Compensation”.

The “ROM” performance component indicates whether a post-
stroke survivor achieves to perform the target position of an ex-
ercise (e.g. bringing the wrist to the mouth for Exercise 1). For
the ‘ROM’ performance component, we computed joint angles (e.g.
elbow flexion, shoulder flexion, elbow extension), normalized rela-
tive trajectory (i.e. Euclidean distances between two joints - head
and wrist, head and elbow), and normalized trajectory distance (i.e.
absolute distances between two joints - head and wrist, shoulder
and wrist) in x, y, z-axis.

The “Smoothness” performance component describes whether
a post-stroke survivor smoothly coordinates a motion. For the
“Smoothness” performance component, we computed various speed-
related features: speed, acceleration, jerk, the zero-crossing ratio of
acceleration and jerk, and Mean Arrest Period Ratio (the portion of
the frames when speed exceeds 10% of the maximum speed) [51].
As this study focuses on upper-limb exercises, we computed these
speed-related features on wrist and elbow joints.

The “Compensation” performance component check whether a
post-stroke survivor utilizes any unnecessary joint motions (e.g.
leaning the trunk forward, elevating the shoulder joint, etc.) to
perform an exercise. For the ‘Compensation’ performance compo-
nent, we computed joint angles (i.e. the elevated angle of a shoulder,
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the tilted angle of spine, and shoulder abduction) and normalized
trajectories (i.e. the distances between joint positions of the head,
spine, shoulder joints in x, y, z-axis from the initial to the current
frames).

Before extracting features, we applied a moving average filter
with the window size of five frames to reduce the noise of acquiring
joint positions from aKinect sensor similar to the prior research [39].
For each exercise motion, we computed a feature matrix (F ∈ Rt×d )
with t frame and d features and statistics (i.e. max, min, range,
average, and standard deviation) over all frames of the exercise to
summarize a motion into a feature vector (X ∈ R5d ). We denote the
correct, normal performance component as Y = 1 and incorrect,
abnormal performance component as Y = 0.

4 HUMAN-AI COLLABORATIVE, CLINICAL
DECISION SUPPORT SYSTEM

In this work, we present a human-AI collaborative, clinical decision
support system (Figure 1) that integrates a machine learning (ML)
model with a rule-based (RB) model to assist the assessment of
post-stroke survivor’s quality of motion. Initially, this system will
start with an RB model from therapists as an ML model requires
an annotated dataset for the development. With the RB model, this
system assesses the quality of post-stroke survivor’s rehabilitation
exercises and identifies samples with low confidence scores that a
therapist can prioritize to annotate. When the annotated dataset
is collected, this system trains an ML model and integrates it with
the RB model as a hybrid model. The hybrid model can leverage
the strengths of both an ML model that extracts new insights from
data and an RB model that allows user engagement (e.g. updating a
rule-based model [42]) and being adaptable to support human-AI
collaborative decision making on rehabilitation assessment.

4.1 Machine Learning Model
A machine learning model utilizes a supervised learning algorithm
to assess post-stroke survivor’s quality of motion on three per-
formance components of physical stroke rehabilitation: “ROM”,
“Smoothness”, and “Compensation”. Among various traditional su-
pervised learning algorithms (e.g. Decision Trees, Linear Regression,
Support Vector Machine, and Neural Networks), we utilized a Neu-
ral Network (NN) due to its outperformance as shown in [39]. For
the implementation of a NN model, we explored various architec-
tures (i.e. one to three layers with 32, 64, 128, 256, 512 hidden units)
and an adaptive learning rate with different initial learning rates
(i.e. 0.0001, 0.005, 0.001, 0.01, 0.1) and grid searched the parameters
during the leave-out-patient cross-validation. We applied ‘ReLu’
activation functions on hidden units of a NN model and trained it
using cross-entropy loss (−

∑
c 1(Y=c)logf (X)c ), where f (X)c indi-

cates the probability score of a class label c from a NN model and
1(Y=c) is an indicator function (0 or 1) if class label c is the correct
classification. For training the parameters of a NN model, we uti-
lized ‘AdamOptimizer’ until the tolerance of optimization became
0.0001 or the maximum 200 iterations. The parameters of neural
networks (i.e. hidden layers/units and learning rate) that achieved
the best F1-score during the cross-validation are summarized in
Table 1.

Table 1: Parameters of machine learning models (i.e. neural
network models) using full annotations by a therapist

Hidden Layers and Units / Learning Rate

ROM Smooth Comp

E1 (32, 32, 32) / 0.1 (16) / 0.0001 (256, 256) / 0.1

E2 (256) / 0.1 (512, 512) / 0.1 (128) / 0.1

E3 (256) / 0.1 (64, 64) / 0.001 (128, 128) / 0.1

4.2 Rule-Based Model
A rule-based (RB) model utilizes the set of feature-based rules from
therapists to assess post-stroke survivor’s quality of motion. For
the initial development of an RB model, we elicited 15 independent
if-then rules to assess the quality of physical stroke rehabilitation
exercises from semi-structured interviews with two therapists [41].
During the interviews, the researcher asked therapists to think out
loud their procedures to quantitatively assess post-stroke survivor’s
quality of motion on three performance components of physical
stroke rehabilitation: “ROM”, “Smoothness”, and “Compensation”
(Section 3.2). To facilitate therapists’ think-aloud procedures, the
researcher showed therapists the videos of post-stroke survivors’
exercises from the previous study on automated assessment of
physical stroke rehabilitation exercises [39]. When therapists enu-
merated a particular body or joint position that they consider for
assessment, the researcher described a kinematic feature to repre-
sent it and further discussed with therapists whether their processes
were correctly represented by a kinematic feature. The list of 15
independent if-then rules from the interviews can be found in Table
2.

For assessing “ROM” performance component, our rules describe
whether the estimated target position of each exercise is achieved
or not. For example, the assessment of the ROM component for
Exercise 1 was specified as follows:

Ŷ =

{
1 if pmax (wr , cy ) >= p

max (spsh, cy )

0 else
(1)

where Ŷ denotes the predicted label on a performance component.
pmax (j, c) indicates the maximum joint position with a joint j (e.g.
the wrist (wr ) and the spine shoulder, the top of spine, (spsh)) and
the coordinate of a joint position, c in the set C ∈ {cx , cy , cz }. This
rule monitors whether the maximum position of the post-stroke
survivor’s wrist joint (pmax (wr , cy )) exceeds that of the post-stroke
survivor’s spine shoulder joint (pmax (spsh)) in the y-coordinate to
roughly assess whether a post-stroke survivor achieves the target
position of Exercise 1 that requires a post-stroke survivor to bring
the post-stroke survivor’s wrist to the mouth as if drinking water.

For “Smoothness” performance component, as therapists de-
scribed that theymonitorwhether a post-stroke survivor can smoothly
move survivor’s wrist, we discussed creating rules that measure
the rate at which wrist accelerations on x, y, z-axis change from
positive to negative or from negative to positive and represent the
degree of non-smoothness.
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Table 2: List of independent rules to assess the quality of motion from therapists

Performance Rules
Components

Range of Motion (ROM)
a wrist joint should be located above a spine-shoulder joint near a head joint for exercise 1
a wrist joint should be located higher than a shoulder joint for exercise 2
a wrist joint should be located further than hip near a knee for exercise 3

Smoothness
a wrist joint should be smoothly coordinated in the x-axis during 80% of the motion
(zero-crossing ratio of a wrist acceleration in the x-axis is within 20%)
a wrist joint should be smoothly coordinated in the y-axis during 80% of the motion
(zero-crossing ratio of a wrist acceleration in the y-axis is within 20%)
a wrist joint should be smoothly coordinated in the z-axis during 80% of the motion
(zero-crossing ratio of a wrist acceleration in the z-axis is within 20%)

Compensation

a head joint should not be located more/less than 15% of an initial head position in the x-axis
a head joint should not be located above/below 15% of an initial head position in the y-axis
a head joint should not be located more/less than 15% of an initial head position in the z-axis
a spine joint should not be located more/less than 15% of an initial spine position in the x-axis
a spine joint should not be located above/below 15% of an initial spine position in the y-axis
a spine joint should not be located more/less than 15% of an initial spine position in the z-axis
a shoulder joint should not be located more/less than 15% of an initial shoulder position in the x-axis
a shoulder joint should not be located above/below 15% of an initial shoulder position in the y-axis
a shoulder joint should not be located more/less than 15% of an initial shoulder position in the z-axis

For “Compensation” performance component, therapists mainly
check whether a post-stroke survivor performs any unnecessary
movements on the head, spine, and shoulder joints. We discussed
creating rules that quantitatively evaluate such compensatorymove-
ments by measuring how much post-stroke survivor’s head, spine,
and shoulder joints are moved from the initial position in x, y, z-axis.

The equation of an RB model to compute a score of being correct
on the performance component is described as follows:

PRB =
1
|R|

∑
r ∈R

min(
fr
τr
, 1) (2)

where R indicates a set of rules from therapists. fr describes the
feature value of a rule r from an exercise motion (e.g. pmax (wr , cy )
for the example above) and τr describes the threshold value of a
rule r (e.g. pmax (spsh, cy ) for the example above). This equation
normalizes the feature value of a rule with the threshold of a rule
to compute the score of being correct. min function is applied so
that this equation assigns the value of 1 if the feature value of a
rule exceeds the threshold of that rule.

4.3 Hybrid Model
A hybrid model integrates two perspectives on assessment using
a weighted average ensemble technique [4, 41]: a machine learn-
ing model that discovers how to assess the quality of motion from
data and a rule-based model from therapists. For the assessment of
the quality of motion, a hybrid model (HM) computes a weighted
average of prediction scores from two models, in which the contri-
bution of each model is weighted by the performance of a model (i.e.
the F1-score of each model in the range of [0, 1]). The equation to
compute the prediction score of an HM (PHM ) model is described

as follows:

PHM =
ρml

ρml + ρrb
PML +

ρrb
ρml + ρrb

PRB (3)

where PML and PRB indicate the predicted scores of a machine
learning (ML) model and a rule-based (RB) model, and ρml and
ρrb describe the performance, F1-score of an ML model and an RB
model respectively.

4.4 Visualization Interface
We implemented a web-based visualization interface using HTML,
Javascript, and Python libraries to present the video of a post-stroke
survivor’s rehabilitation exercise, the predicted assessment on the
post-stroke survivor’s quality of motion, and the trajectories of
the post-stroke survivor’s wrist, elbow, and shoulder joints (Figure
2). When this interface presents the predicted assessment, it also
includes the confidence score to “make clear how well the system
can do” [2]. Specifically, we follow prior research that leverages
the probability score of a classifier as a confidence score (e.g. prob-
abilities from the softmax layer of a neural network) [23, 46, 61]
and utilize the predicted score of a model, PM (Y |X ) to identify low
confidence samples (e.g. 0.2) [44], whereM ∈ {ML,RB}. When the
prediction of a model has a low confidence score, this interface
highlights this prediction with low confidence so that a therapist
can review and update the labels if necessary. For the user study
with therapists, we pre-processed post-stroke survivors’ exercise
videos and stored predictions on post-stroke survivor’s quality of
motion from our model to avoid any delays in processing data.

As therapists utilize patient’s unaffected side as normality for
assessment [57, 58], this interface compares patient’s unaffected
and affected sides on major joint trajectories of an upper-limb
exercise (i.e. shoulder, elbow, and wrist joints) to ‘match relevant
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social norms’ [2]. In addition, this interface supports to “honor user
feedback” [37]. Specifically, a therapist can review the predicted
assessment on a performance component of patient’s rehabilitation
exercises and update the labels to train a machine learning model
(Figure 1).

5 EXPERIMENTS
5.1 Dataset of Three Upper Limb Exercises
This work utilized the dataset of three upper limb exercises from
15 post-stroke survivors with various functional abilities (37 ±

21 Fugl Meyer Scores [57]) and 11 healthy participants [39]. This
dataset of each exercise includes the videos of participants and
the corresponding body joint trajectories from a Kinect v2 sensor
(Microsoft, Redmond, USA). A post-stroke survivor performed 10
repetitions of each exercise with their affected and unaffected sides
and a healthy participant performed 15 repetitions of each exercise
with the participant’s dominant side.

5.2 Annotations
We collected three sets of annotations from therapists without/with
our human-AI collaborative, clinical decision support system and
evaluation of its effectiveness on an annotation process. Three sets
of annotations include 1) annotations from therapists, 2) annota-
tions from a rule-based model and therapists, and 3) annotations
from a hybrid model and a therapist.

5.2.1 Annotations from Therapists.
Two therapists (TP 1 and 2 in Table 3) individually annotated the
dataset (Section 5.1) without reviewing analysis of our system (Fig-
ure 2). As therapist 1 (TP 1) supported the recruitment of patients
and evaluated their functional abilities with the clinical assessment
tool (e.g. Fugl Meyer Assessment [57]), we utilized the annotations
of TP 1 as ground truth for the development and evaluation of
a system. In addition, the annotations of therapist 2 (TP 2) were
compared with those of TP 1 to measure the therapists’ agreement
level (Table 4).

5.2.2 Annotations with a Human-AI Collaborative System.
We collected two annotations with our human-AI collaborative,
clinical decision support system to evaluate its effectiveness to
support annotations: annotations from a rule-based model and
therapists (ARBT) and annotations from a hybrid model and a
therapist (AHMT).

For the ARBT, we implemented our systemwith a rule-based (RB)
model that does not require any annotations for the development.
Our system can generate the predicted assessment on the quality of
motion (Figure 2), which can serve as an annotation. In addition, our
system identifies a sample with a low confidence score as described
in Section 4.4 and allows a therapist to relabel annotations from
the system. For this re-labeling process, we recruited five therapists
with µ = 4.00, σ = 1.67 years of experience in stroke rehabilitation
(TPs with checkmarks in the ‘Relabel’ column in Table 3). Each
therapist was instructed to review the predicted assessment from
the system and update its predictions to make them as accurate as
possible during a 30-minute session. We assigned non-overlapping,
three patients for each therapist to generate annotations on our
entire dataset.

For the AHMT, we trained a machine learning model (e.g. a
neural network) with the ARBT and integrated it with a rule-based
as a hybrid model (HM). Our system utilizes the HM to predict the
assessment of the quality of motion. For the re-labeling process,
our system identifies samples with low confidence scores from the
HM and replaces predictions of our system with the annotations
from therapist 2 (TP 2).

Table 3: List of participants for the studies on annotation,
rule elicitation (ElicitRule), and re-label (Relabel).

ID Studies # of Years in
Annotation ElicitRule Relabel Stroke Rehab

TP1 ✓ ✓ 6
TP2 ✓ ✓ ✓ 4
TP3 9
TP4 ✓ 4
TP5 ✓ 1
TP6 ✓ 6
TP7 ✓ 5

6 RESULTS
6.1 System Performance of Rehabilitation

Assessment
For the evaluation of system implementation, we applied the Leave-
One-Patient-Out (LOPO) cross-validation on post-stroke patients
to avoid overfitting and provide more reliable error estimates. The
LOPO cross-validation utilizes data from all participants except one
post-stroke patient to train a machine learning (ML) model and
utilizes data of the left-out testing post-stroke patient to test how
well an ML model can assess post-stroke patient’s quality of motion.
For the performance metric, we utilized an F1-score, which seeks
to balance between precision (i.e. how many instances a model can
classify correctly) and recall (i.e. how robust a model is).

Table 4 summarizes the performance of our system, which mea-
sures the agreement with therapist 1 (TP 1)’s annotations using
average F1-scores of models on three exercises. Specifically, we
present the performance of our rule-based (RB) model from thera-
pists, a machine learning, Neural Network model (ML-NN), and a
hybrid model (HM) that integrates the ML-NN model with the RB
model.

The RBmodel achieves the lowest agreement level with therapist
1 (TP 1)’s annotations: 0.5821 average F1-scores over three exercises.
The machine learning, Neural Network model (ML-NN) achieves
the highest, good agreement with TP 1’s annotations: 0.8279 av-
erage F1-scores over three exercises. In addition, the ML-NN also
performs better than the therapists’ agreement. However, the per-
formance difference between the ML-NN and therapists’ agreement
is not statistically significant according to the paired t-test over
their performances on three exercises and three performance com-
ponents. The hybrid model (HM) integrates the ML-NNwith the RB
model and achieves a 0.7931 average F1-score over three exercises.
The performance of the HM is a 0.03 lower average F1-score than
that of the ML-NN. However, the performance difference between
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Table 4: Performance of machine learning models with neural networks (ML-NN), the rule-based (RB) models, and hybrid
models (HMs), and therapists’ agreement

Exercise 1 (E1) Exercise 2 (E2) Exercise 3 (E3) Overall

RB 0.6148 ± 0.1702 0.6932 ± 0.1630 0.4384 ± 0.1569 0.5821 ± 0.1066

ML - NN 0.8632 ± 0.0816 0.8388 ± 0.0518 0.7818 ± 0.0097 0.8279 ± 0.0605

HM 0.8437 ± 0.0697 0.7545 ± 0.0561 0.7812 ± 0.0479 0.7931 ± 0.0644

Therapists’ Agreement 0.7455 ± 0.2054 0.8147 ± 0.1522 0.7254 ± 0.1838 0.7619 ± 0.1626

the HM and the ML-NN is not statistically significant using the
paired t-test. Even if combining two perspectives on assessment
(i.e. the ML-NN and RB models) does not improve the performance
of a model to assess the quality of motion, the HM still achieves
higher performance than the therapists’ agreement without statis-
tical significance.

6.2 Effect of Annotating with a Human-AI
Collaborative System

To evaluate the effectiveness of annotating with our human-AI col-
laborative system, we utilized three annotations to train a machine
learning, Neural Network model (ML-NN). Given ML-NN models
with three annotations, we compared their performance to replicate
therapist’s assessment and their training curves over the number of
annotations from therapists. Three annotations include 1) annota-
tions from the TP 1, 2) annotations from the rule-based model and
therapists (ARBT), and 3) annotations from the hybrid model and a
therapist (AHMT). For the ARBT, therapists provided an average
of 141 relabels out of 465 samples. In addition, our system applied
an average of 103 relabels out of 465 samples with the annotations
from therapist 2 (TP2) for the AHMT.

Table 5 summarizes the performances of the ML-NNs that are
trained with the leave-one-patient-out cross-validation and three
different annotations respectively. For comparing the performance
of the ML-NNs with three different annotations, we conducted
paired t-tests over their performances on three exercises and three
performance components. In addition, we show the learning curves
of the ML-NNs with three different annotations (Figure 3). The
orange dotted lines of Figure 3 indicate the therapists’ agreement
using the annotations from therapist 1 and therapist 2. The green
graphs of Figure 3 indicate the performances of ML-NNs that were
trained with annotations from therapist 1. The red graphs of Figure
3 describe the performance of the ML-NNs with the annotations
from the rule-based model and relabeling from therapists. The sky
blue graphs of Figure 3 show the performance of the ML-NNs with
the annotations from the hybrid model and relabeling with the
annotations from the therapist 2.

Our results in Table 5 show that the ML-NNs with three anno-
tations perform equally well according to the paired t-tests and
achieve better performance than the therapists’ agreement with-
out any statistical significance. In addition, our results in Figure 3
describe that our system with the RB model requires only around
33% annotations (i.e. an average of 141 relabels) to train the ML-
NNs that have equally good performance with the ML-NNs that
are trained with the annotations from the TP 1. In addition, our

system with the hybrid model requires only around 22% annota-
tions (i.e. an average of 103 relabels) to train the ML-NNs that have
equally good performance with the ML-NNs that are trained with
the annotations from the TP 1.

7 DISCUSSION
In this section, we discussed the potential implications and lim-
itations of our study for the better development and integration
of a human-AI collaborative, clinical decision support system in
practice.

Our results suggest a possible, efficient procedure to develop a
human-AI collaborative, decision support system. When an anno-
tated dataset is not available, our system starts with a rule-based
(RB) model from experts to predict expert decision-making (e.g.
rehabilitation assessment) and identify samples with low confi-
dence scores for efficient annotations (Figure 3). When an annotated
dataset becomes available, our system trains an ML model to auto-
matically extract new insights on experts’ decision-making from
data. Even if an ML model with a complex algorithm (e.g. a neural
network) outperforms an RB model, we do not recommend replac-
ing an RB model with an ML model that operates as a black-box
system. Instead of further exploring complex, black-box algorithms
to seek performance improvement [39, 48], this work suggests de-
veloping a hybrid model (HM) that integrates an ML model with
an RB model for human-AI collaborative decision-making [42].

A hybrid model (HM) does not necessarily improve the perfor-
mance to predict an expert’s decision-making (e.g. assessing post-
stroke survivor’s rehabilitation exercises) as the HM integrates
an ML model with an RB model that includes generic rules and
performs lower than therapists’ agreement. We observed that the
performance of the HM became slightly lower than that of the ML
model with a Neural Network (ML-NN). Such performance degrada-
tion becomes more eminent as the HM model increases the weight
on the RB model that achieved lower performance than therapists’
agreement (i.e. in case of exercise 1 and exercise 2). However, the
HM still achieves comparable performance with the ML-NN and
achieves better performance than the therapists’ agreement (Table
4). Compared to the ML-NN, the HM can leverage both data analytic
capability of an ML model and the flexibility and interpretability
of an RB model. Specifically, the HM has the potential benefit of
supporting the user engagement by analyzing rules of the RB model
and fine-tuning a model with patient-specific rules for improving
its performance [42].

Our results show that both RB and HM models can be utilized to
identify samples with low confidence scores and support an efficient
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Table 5: Performance of machine learning (ML) models with different annotation datasets: (1) annotations from a therapist,
(2) annotations from the RB model and therapists, and (3) annotations from the HMmodel and a therapist.

Annotations Exercise 1 (E1) Exercise 2 (E2) Exercise 3 (E3) Overall

ML - NN a therapist 0.8632 ± 0.0816 0.8388 ± 0.0518 0.7818 ± 0.0097 0.8279 ± 0.0605

ML - NN RB & therapists 0.8830 ± 0.0970 0.8678 ± 0.0972 0.7566 ± 0.0820 0.8358 ± 0.0690

ML - NN HM & a therapist 0.8814 ± 0.0722 0.8052 ± 0.1222 0.7473 ± 0.0630 0.8113 ± 0.0673

Therapists’ Agreement therapists 0.7455 ± 0.2054 0.8147 ± 0.1522 0.7254 ± 0.1838 0.7619 ± 0.1626

(a) Exercise 1 (b) Exercise 2 (c) Exercise 3

Figure 3: The training curve of a machine learning (ML) model (i.e. a neural network) with full annotations from a therapist
(green graph), annotations from our system with only a rule-based model (red graph), and a hybrid model (skyblue graph).
Our system requires only 22 - 33% of total annotations to train an ML model that achieves similar performance with an ML
model with the full annotations from a therapist.

Table 6: Parameters of machine learning models (i.e. neural
network models) using annotations by a rule-based model
and therapists

Hidden Layers and Units / Learning Rate

ROM Smooth Comp

E1 (64, 64, 64) / 0.1 (512, 512) / 0.1 (32, 32) / 0.1

E2 (32) / 0.0001 (256, 256) / 0.1 (16, 16) / 0.0001

E3 (64, 64) / 0.1 (64, 64, 64) / 0.1 (128, 128) / 0.1

Table 7: Parameters of machine learning models (i.e. neural
network models) using annotations by a hybrid model and
a therapist

Hidden Layers and Units / Learning Rate

ROM Smooth Comp

E1 (64, 64) / 0.1 (256) / 0.1 (512, 512) / 0.01

E2 (32) / 0.0001 (256, 256) / 0.005 (16) / 0.0001

E3 (16, 16, 16) / 0.1 (128, 128, 128) / 0.005 (16) / 0.0001

annotation process (Table 5). Specifically, our system with the RB
requires an average of 141 relabels, 33% of total annotations to train
an ML model, and our system with the HM requires an average of
103 relabels, 22% of total annotations to train an ML model that
achieves equally good performance with an ML model with full
annotations by an expert. However, we found that even if the HM
had much higher performance than the RB model, the ML model
with the annotations from the HM and a therapist led to slightly
lower performance than the ML model with the annotations from
the RBmodel and therapists without statistical significance. Thus, it
would be interesting to further explore whether the HM can support
training a better ML model and achieve more efficient annotation
after improving the technique of a multimodal machine learning [4]
and fine-tuning the RB model. In addition, as the probability scores
of a model might not be well-calibrated to represent samples with
low confidence scores [23], it is important to further investigate an
approach to estimate the confidence score of a model and determine
if the prediction of a model can be utilized it to better identify
samples with low confidence scores and build a trustful interaction
with the user [7, 23].

Overall, our work presents a human-AI collaborative, clinical
decision support system that exploits not only a machine learning
(ML) model to automatically extract new insights from data, but
also a rule-based (RB) model to accommodate experts’ knowledge.
We believe that a general concept of our human-AI collaborative

12



IUI ’22, March 22–25, 2022, Helsinki, Finland Min Hun Lee et al.

approach that integrates an ML model with an RB model as a hy-
brid model and accommodates user knowledge and inputs can be
extended to other disciplines and improve their decision-making
procedures. However, this study is limited to exploring the feasibil-
ity of our approach in the context of physical stroke rehabilitation
assessment. An additional study is required to expand the appli-
cation of our human-AI collaborative approach on different tasks
or data modalities [9, 19]. In addition, as this work focused on
empirical research on the development process of a system, this
work provided limited interactions to support therapists’ relabeling,
enable a trustful usage with the system, and enhance their clini-
cal decision-making [12, 42]. It is necessary to further study how
and what additional interactions can be provided to enable trustful
usage by the domain experts and improve their decision making
without introducing biases [21].

8 CONCLUSION
In this work, we contributed to an empirical study on the efficient
development and annotation process of a human-AI collaborative,
clinical decision support system in the context of physical stroke
rehabilitation assessment. Our results showed that initially if an
annotated dataset is not available, a rule-based (RB) model from
therapists can be used to replicate expert’s decision making (e.g.
assessing patient’s quality of motion) and identify samples with
low confidence scores to support efficient annotations for training
an ML model. Specifically, our approach can leverage annotations
and confidence scores of the RB model and require only 22-33%
of annotations to train an ML model that achieves equally good
performance with an ML model with all annotations from a do-
main expert. In addition, after collecting an annotated dataset, our
work discusses the potential of a hybrid model that augments an
ML model with an RB model from domain experts for human-AI
collaborative decision making in high-stake domains.
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