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Abstract— A robotic exercise coaching system requires the
capability of automatically assessing a patient’s exercise to in-
teract with a patient and generate corrective feedback. However,
even if patients have various physical conditions, most prior
work on robotic exercise coaching systems has utilized generic,
pre-defined feedback.

This paper presents an interactive approach that combines
machine learning and rule-based models to automatically assess
a patient’s rehabilitation exercise and tunes with patient’s
data to generate personalized corrective feedback. To generate
feedback when an erroneous motion occurs, our approach
applies an ensemble voting method that leverages predictions
from multiple frames for frame-level assessment. According to
the evaluation with the dataset of three stroke rehabilitation
exercises from 15 post-stroke subjects, our interactive approach
with an ensemble voting method supports more accurate frame-
level assessment (p < 0.01), but also can be tuned with held-out
user’s unaffected motions to significantly improve the perfor-
mance of assessment from 0.7447 to 0.8235 average F1-scores
over all exercises (p < 0.01). This paper discusses the value of
an interactive approach with an ensemble voting method for
personalized interaction of a robotic exercise coaching system.

I. INTRODUCTION

Patients with neurological and musculoskeletal problems
(e.g. stroke) require early and extensive physical therapy
sessions with task-oriented exercises for months to regain
their functional ability [1]. During a session, a therapist
monitors and assesses patient’s exercises to provide cor-
rective feedback. However, patients can receive the limited
amount of those supervised sessions due to the shortage of
therapists and the costs [2]. Instead, in-home rehabilitation
regimens are often prescribed. During in-home rehabilitation
regimens, patients might become confused whether they
correctly perform exercises and lose their motivation without
any supervision[2].

Recent advances in computing and artificial intelligence
empowers a robot with various autonomous capabilities to
understand and interact with the world [3]. Researchers have
explored the possibility of supplementing health services
with advanced computing and socially assistive robotics
[4]. For instance, researchers have envisioned that a robotic
exercise coaching system can be integrated into a rehabilita-
tion process by automatically monitoring patient’s exercises
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and providing motivational and corrective feedback until
the patient’s next visits to a therapist [4], [5]. Prior work
on robotic exercise coaching systems has demonstrated that
elderly or post-stroke subjects can successfully exercise and
stay engaged with a robot over sessions [6], [7]. However,
in spite of this potential of a robot to monitor and guide ex-
ercises, prior work is limited to provide generic, pre-defined
corrective feedback on patient’s exercise performance (e.g.
checking angular difference with the pre-specified motion
[6], [7]). It is still challenging to empower a robotic exercise
coaching system to generate tailored corrective feedback on
an individual patient’s motion [7].

In this paper, we focus on improving an approach to
automatically assess exercise performance to generate per-
sonalized corrective feedback that can be the basis of more
intelligent and natural interaction between a robotic exercise
coach system and patients afterwards. Specifically, this paper
presents an interactive approach that integrates the benefits of
machine learning (ML) and rule-based (RB) models to assess
the performance of exercises for personalized post-stroke
therapy (Figure 1a). As a ML model is able to automatically
learn insights on a large amount of data, our approach
leverages this ML model to achieve generic assessment
on patient’s quality of motion. In addition, our approach
utilizes a RB model that is flexible to address an edge
case of patients with diverse characteristics and interpretable
to generate personalized feedback. Our approach applies a
weighted average ensemble technique [8] to derive a hybrid
model (HM) that accommodates these two perspectives on
assessment from both ML and RB models [9]. Moreover, our
approach applies an ensemble voting method that utilizes
evidence, predictions of multiple consecutive frames for
frame-level assessment, and generates patient feedback when
an erroneous motion is occurred. Given a new patient, our
approach first tunes a RB model with the patient’s unaffected
motions. Our approach then predicts the quality of motion
and generates personalized corrective feedback on patient’s
affected motions (Figure 1c).

For the development and evaluation of our approach, we
utilize the dataset of three upper-limb rehabilitation exercises
from 15 post-stroke subjects with the corresponding annota-
tion from two experts. Given this dataset, a machine learning
(ML) model with neural network is trained using leave-one-
subject-out cross validation. For the initial development of a
rule-based (RB) model, we conducted semi-structured inter-
views with therapists to elicit their knowledge of assessing
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Fig. 1: (a) Flow diagram of an interactive approach of a socially assistive robot for personalized physical therapy. (b)
the setup of a system with (i) a Kinect sensor, (ii) a tablet with the visualization interface, and (iii) the NAO robot. (c)
An example output of the visualization interface that presents predicted assessment on patient’s exercise performance with
corrective feedback.

stroke rehabilitation exercises.
After implementing our interactive hybrid model (HM),

we empirically evaluate the performance of a model to
replicate expert’s assessment, and analyze the effect of tuning
a model with patient’s unaffected motions and a majority
voting method for frame-level assessment. Our experimental
results show that an initial, generic HM can be tuned into a
personalized model with patient’s unaffected motions while
significantly improving the performance of the HM around
11% from 0.7447 to 0.8235 average F1-scores on three
exercises (p < 0.01). In addition, all models (i.e. machine
learning, rule-based, and hybrid models) with an ensemble
voting method improve their performance of frame-level
assessment (p < 0.01).

This paper makes the following contributions:
• We present approaches to improve the capability of a

robot exercise coaching system to automatically assess
exercise performance and generate personalized correc-
tive feedback: 1) an interactive approach that combines
machine learning and rule-based models and 2) an
ensemble voting method for frame-level assessment

• We demonstrate the effect of tuning a model with
patient’s unaffected motions and an ensemble voting
method for frame level assessment, and discuss the
value of an interactive approach with an ensemble
voting method for personalized, transparent interaction
of a robotic exercise coaching system.

II. RELATED WORK

The research of socially assistive robotics has shown great
potential to supplement healthcare services through social
interaction [10]. For instance, a robotic exercise coach-
ing system can be deployed in a rehabilitation process to
automatically monitor rehabilitation exercises and provide
subjects feedback without the presence of a therapist [4],
[5]. Fasola and Mataric demonstrated that elderly people
considered a physically embodied robot more engaging and
acceptable as an exercise partner than a virtually embodied
agent [6]. Furthermore, Researchers have shown that diverse
populations (i.e. post-stroke patients [6], elderly people [7],
children [11]) can successfully engage in exercise sessions
with a robotic exercise coaching system.

For a robotic exercise coaching system, the capability of
automatically assessing a patient’s motion is critical to derive
a personalized interaction with tailored corrective feedback
on patient’s exercise performance [7], [12]. However, limited
prior work on robotic exercise coaching systems has explored
how an automated assessment approach can be developed
to generate personalized corrective feedback. For instance,
researchers have implemented a method that evaluates the
completion of an exercise by computing the difference of a
joint angle between user’s motion and the pre-defined target
motion [6], [7]. Guneysu and Arnrich [11] applied dynamic
time warping to compute the statistics of a joint angle and
distance measures with a pre-defined motion. Nguyen et al.
[13] utilized a Gaussian Mixture Model to generate an ideal
motion and arbitrarily set a threshold value to identify the
differences of joints between idea and observed motions.

Although both [11] and [13] support to analyze multiple
variables for evaluating an exercise, they still rely on a
pre-defined motion or a generic threshold. Prior work with
generic threshold-based methods might not be applicable for
patients with various characteristics [9]. In addition, there is
a lack of evaluation on how well these methods can monitor
other complex performance metrics of an exercise (e.g.
smoothness or the occurrence of a compensation motion).

For personalized rehabilitation assessment, Lee et al. have
showed that an interactive approach can dynamically select
features of assessment using reinforcement learning to gen-
erate patient-specific analysis [14] as a decision support tool
for therapists [15] and a robotic coaching system for patients
[12]. However, prior work is limited to provide assessment
after completing a motion and does not support frame-level
assessment to provide any information on when an erroneous
motion has occurred.

In contrast to prior work described above, we present
an interactive approach that combines machine learning
(ML) and rule-based (RB) models to assess the quality of
motion and tune with patient’s data to generate personalized
corrective feedback of a socially assistive robotic system
for physical therapy. Our approach can support complex
multivariate analysis on patient’s exercises with a machine
learning model. In addition, our approach can be easily



updated with a RB model to accommodate individual’s
diverse physical characteristics for personalized assessment
and feedback. Instead of tuning a model with therapist’s
feedback [14], our approach tunes a RB model with held-
out patient’s data. To generate feedback when an erroneous
motion has occurred, our approach supports frame-level as-
sessment of a compensated motion with an ensemble voting
method that accommodates predictions on multiple consec-
utive frames of an exercise motion. Using the annotated
dataset of three upper-limb stroke rehabilitation exercises
from 15 post-stroke patients, we demonstrate how well our
approach can automatically assess the overall quality of
motion (e.g. range of motion and smoothness) and detect
a compensation motion on head, spine, shoulder joints at
frame level. This work contributes to increasing knowledge
on techniques to automatically assess exercises for a robotic
exercise coaching system.

III. STUDY FOR STROKE REHABILITATION

We selected a probe domain as stroke, which is the second
leading cause of death and third most common contributor
to disability [16]. We had iterative discussion with three
therapists (µ = 6.33, σ = 2.05 years of experience in
stroke rehabilitation) to specify the study designs on stroke
rehabilitation: exercises and performance components for
assessment [17].

A. Three Task-Oriented Upper Limb Exercises

This work utilizes three upper-limb stroke rehabilitation
exercises recommended by therapists [17]. For Exercise 1,
a subject has to raise the subject’s wrist to the mouth as if
drinking water. For Exercise 2, a subject has to pretend to
touch a light switch on the wall. For Exercise 3, a subject
has to extend the subject’s elbow in the seated position to
practice the usage of a cane.

B. Performance Components

We discussed commonly used stroke assessment tools
(i.e. the Wolf Motor Function Test and the Fugl Meyer
Assessment [18]) with therapists and specified three common
performance components of stroke rehabilitation exercises:
‘Range of Motion (ROM)’, ‘Smoothness’, and ‘Compen-
sation’ [17]. The ‘ROM’ indicates how closely a patient
performs the target position of a task-oriented exercise.
The ‘Smoothness’ describes the degree of trembling and
irregular movement of joints while performing an exercise.
The ‘Compensation’ indicates whether a patient performs
any compensated movements to achieve a target movement.
For instance, a patient might lean the patient’s head or trunk
to the side and elevate the patient’s shoulder to raise the
affected hand (Figure 2)

The guidelines of annotating performance components are
described in Table I. The labels of ‘ROM’ and ‘Smoothness’
are annotated at the end of a motion on a three point scale.
Those labels of ‘ROM’ and ‘Smoothness’ are converted to a
binary label with the following mapping: a score 2 indicates
a correct/normal performance component (Y = 1), and both

(a) Unaffected (b) Affected (c) Unaffected (d) Affected

Fig. 2: Two patients performing Exercise 1 with different
compensated motions.

TABLE I: Guidelines to Assess Stroke Rehabilitation Exer-
cises.

Performance
Components Labels Guidelines

Range of Motion
(ROM)

0 Does not or barely involve any movement
1 Less than half way aligned with an ‘Target’ position
2 Movement achieves an ‘Target’ position

Smoothness
0 Excessive tremor or not smooth coordination
1 Movement influenced by tremor
2 Smoothly coordinated movement

Compensation
0/1 Head in abnormal/normal alignment
0/1 Spine in abnormal/normal alignment
0/1 Shoulder in abnormal/normal alignment

score 1 and 0 describe an incorrect/abnormal performance
component (Y = 0). The labels of ‘Compensation’ are
annotated at every frame of the patient’s motion to indicate
whether three major compensations (i.e. abnormal alignment
of head, spine, and shoulder) occurs or not.

IV. INTERACTIVE APPROACH OF AN ASSISTIVE ROBOT
FOR PERSONALIZED ASSESSMENT AND FEEDBACK

This paper presents an interactive approach of a robotic
exercise coaching system (Figure 1a), which combines ma-
chine learning (ML) and rule-based (RB) models to assess
the performance of an exercise and tunes with patient’s
data to generate personalized feedback. A ML model of our
approach aims to extract meaningful patterns from a large
amount of data and support generic assessment on the pa-
tient’s quality of motion. As such a generic ML model might
not perform well on an unobserved new patient’s motion with
unique characteristics, our approach also integrates a person-
alized RB model that can tune with the patient’s unaffected
motions to derive patient-specific threshold values. This RB
model can be easily recombined to complement a generic
ML model with a weighted average, ensemble technique
[9], [14] into a hybrid model (HM) and utilized to generate
personalized corrective feedback on patient’s exercises. To
provide feedback when an erroneous motion has occurred,
we present an ensemble voting method that accommodates
predictions on multiple consecutive frames for more accurate
frame-level assessment. In the following subsections, we
describe the components of our approach: feature extraction,
ML models, RB models, hybrid models, and an ensemble
voting method.



A. Feature Extraction

This work represents an exercise motion with sequential
joint coordinates from a Kinect v2 sensor (Microsoft, Red-
mond, USA) and extracts various kinematic features [19].
For the ‘ROM’, we compute joint angles (e.g. elbow flexion,
shoulder flexion, elbow extension) and normalized relative
trajectory (i.e. the Euclidean distance between two joints -
head and wrist, head and elbow) [19]. For the ‘Smoothness’,
we compute the following speed related features: speed
and zero crossing ratio of acceleration [19]. As our work
demonstrates the feasibility with upper-limb exercises, we
computed these speed related features on wrist and elbow
joints. For the ‘Compensation’, we compute normalized
trajectories: distances between joint positions of head, spine,
shoulder in x, y, z axis from the initial to current frame [19].

A moving average filter with the window size of five
frames is applied to reduce noise of acquiring joint positions
from a Kinect sensor similar to [19]. Given an exercise mo-
tion, we compute a feature matrix F = {f1, ..., fT } ∈ RT×d

with T number of frames and d features and statistics (e.g.
maximum, minimum, range, average, and standard deviation)
of a feature matrix over all frames of the exercise to summa-
rize a motion into a summarized feature vector, X ∈ R5d.
This summarized feature vector is utilized for the assessment
on ‘ROM’ and ‘Smoothness’ performance components and a
feature matrix is utilized for the frame-level assessment on
‘Compensation’ performance component.

B. Machine Learning (ML) Model

A machine learning (ML) model applies a supervised
learning algorithm with training data from all patients ex-
cept a patient for testing to predict the quality of motion
or compute the score of being correct on a performance
component (PML). We explore various supervised learning
algorithms: a Decision Trees (DT), Linear Regression (LR),
Support Vector Machine (SVM), a Neural Network (NN),
and a Long Short Term Memory (LSTM) network using the
‘Scikit-learn’ [20] and the ‘PyTorch’ libraries [21].

For DTs, Classification and Regression Trees (CART) is
utilized to build pruned trees. For LR models, we apply
L1, L2 regularization or linear combination of L1 and L2
(ElasticNet with 0.5 ratio). For SVMs, we apply either
linear, polynomial or Radial Basis Function (RBF) kernels
with the penalty parameter, C = 1.0. NNs are trained
while grid-searching over various architectures (i.e. one to
three layers with 32, 64, 128, 256, 512 hidden units) and
different learning rates (i.e. 0.0001, 0.005, 0.001, 0.01, 0.1).
For LSTM networks, we have two architectures: (i) many-to-
one (Figure 3a) for the ‘ROM’ and ‘Smoothness’ performance
components, which leverages sequential kinematic features
to assess performance components at the end of an exercise
and (ii) many-to-many (Figure 3b) for the ‘Compensation’
performance component that utilizes kinematic features at
every frame of an exercise for frame-level assessment. We
apply 0.5 drop-out to LSTM layers and explore various
fully connected layers for LSTMs: one to three layers with
32, 64, 128, 256, 512 hidden units) and different learning

(a) (b)

Fig. 3: Architectures of LSTM networks: a) many-to-one that
utilizes sequential kinematic features to predict the quality of
‘ROM’ and ‘Smoothness’ at the end of a motion. (b) many-
to-many that utilizes kinematic features at every frame of a
motion to predict the quality of ‘Compensation’.

rates (i.e. 0.0001, 0.005, 0.001, 0.01, 0.1). Fully connected
layers of both NNs and LSTMs have applied ‘ReLu’ ac-
tivation functions. Both NNs and LSTMs are trained with
cross-entropy loss and the mini-batch size of 1 and epoch 1.

C. Rule-Based (RB) Model

A rule-based (RB) model leverages the set of feature-based
rules from therapists to estimate the quality of a motion [9].
For an initial development of the RB model, semi-structured
interviews are conducted with two therapists (µ = 5.0,
σ = 1.05 years of experience in stroke rehabilitation) to elicit
their knowledge of assessing stroke rehabilitation exercises.
The knowledge of therapists is formalized as 15 independent
if-then rules. For example, the assessment on the ROM
component for Exercise 1 is specified as follows [9]:

Ŷ =

{
1 if pmax(wr, cy) >= pmax(spsh, cy)

0 else
(1)

where p(j, c) indicates a joint position with a joint j (e.g.
wrist (wr) and spine shoulder, the top of spine, (spsh)) and
the coordinate of a joint, c in the set C ∈ {cx, cy, cz}. Ŷ
denotes the predicted label on a performance component.

This rule simply checks the maximum position of a wrist
joint, pmax(wr, cy), related to that of a spine shoulder
joint, pmax(spsh, cy), in the y-coordinate to roughly estimate
whether a patient achieves the target position of Exercise 1.
For the prediction with multiple rules, we apply a majority
voting algorithm and do not apply any tie breaking method
given an odd number of rules.

The score of being correct on each performance compo-
nent using the RB model (PRB) can be computed with the
following equation:

PRB =
1

|R|
∑
r∈R

min(
xr
τr
, 1) (2)

where xr indicates the feature value of a rule r from a
trial (e.g. pmax(wr, cy) for the example above), τr describes
the threshold value of a rule r (e.g. pmax(spsh, cy) for the
example above). R describes the set of rules elicited from



the therapists. min function is applied so that this equation
assigns a value of 1 if the feature value of a rule exceeds the
threshold of that rule. Otherwise, the equation normalizes
the feature value of a rule with the threshold of a rule to
compute the score of being correct.

In addition, as the initial threshold values of rules are
generic, our approach can further tune a rule-based (RB)
model with held-out user’s unaffected motions to update its
threshold values on each patient (Figure 1a). For the compu-
tation of personalized threshold values, we utilize held-out
user’s unaffected motions to learn a Gaussian probability
density function f(xr) ∼ N(µr, σ

2
r), where xr indicates

the feature value of a rule r and µr and σr are the mean
and standard deviation of xr respectively. We then update
the threshold value for a rule r with either 2σs or 3σs (i.e.
τr ∈ [µr + 2σr, µr + 3σr]).

D. Hybrid Model

A hybrid model (HM) applies a weighted average, ensem-
ble technique [8], [5] to combine machine learning (ML) and
rule-based models to assess the quality of motion [9]. For
the prediction on the quality of motion, the HM computes
the weighted average of prediction scores from two models,
in which the contribution, weight of each model is the
performance of a model (i.e. the F1-score of each model
in the range of [0, 1]). The equation of computing the score
of being correct using the HM, PHM is as follows:

PHM =
ρML

ρML + ρRB
PML +

ρRB

ρML + ρRB
PRB (3)

where PML and PRB indicate the scores of the machine
learning (ML) and rule-based (RB) models, and ρML and
ρRB describe the weights, F1-scores of ML and RB models.

E. Ensemble Voting Method for Frame-Level Assessment

Our approach supports the detection of a compensation
motion at frame-level so that a robotic exercise coaching
system can provide a patient corrective feedback when an
erroneous motion has occurred. However, such a frame-
level assessment, identifying the exact boundaries of a com-
pensation motion is challenging [22]. Thus, our approach
applies an ensemble voting method that utilizes predictions
on multiple consecutive Vf frames for more robust frame-
level assessment. The process of this method is consist
of 1) initial, continuous frame-level predictions and 2) the
computation of a score to determine a winning prediction.

Let us denote h(ft) the predicted frame-level assessment
at t frame with an assessment model h (e.g. machine learn-
ing, rule-based or hybrid) and a feature vector ft. The first
process of an initial frame-level prediction runs in a continu-
ous fashion with an assessment model to generate predicted
frame-level assessment h(ft) at each frame t. When Vf
number of initial frame-level predictions are available, our
method computes a score of detecting a compensation motion
at frame t over all label classes Y ∈ Y . Then, the winning
prediction at frame t is selected as follows:

Ŷt = arg max
Y ∈Y

∑
ft∈F̄

δ(h(ft), Y ) (4)

where F̄ indicates a set of accumulated Vf feature vectors
until t frame and δ(h(ft), Y ) assigns 1 if h(ft) = Y and 0
otherwise. The δ function is to count predicted assessment of
Y with the predictions from Vf frames. Ŷt indicates the pre-
dicted frame-level assessment at t frame on a compensation
motion with the largest number of the predictions, votes from
Vf frames. In case of having tied votes, our method assigns
Ŷt with the latest prediction h(ft). Through leveraging votes
from past Vf − 1 frames to current t frame, our approach
can support more robust frame-level assessment.

V. EXPERIMENTS

A. Dataset of Three Upper-Limb Exercises

To evaluate the feasibility of our approach, this work
utilizes the dataset of three exercises from 15 post-stroke sub-
jects using a Kinect v2 sensor (Microsoft, Redmond, USA)
[19]. Fifteen post-stroke patients (2 females) with diverse
functional abilities from mild to severe impairment (37 ± 21
out of 66 Fugl Meyer Scores [18]) performed 10 repetitions
of each exercise with both affected and unaffected sides.
During the data collection, a sensor was located at a height
of 0.72m above the floor and 2.5m away from a subject
and recorded trajectory of joints and video frames at 30 Hz.
The starting and ending frames of exercise movements were
manually annotated.

Two therapists (µ = 5.0, σ = 1.0 years of experience
in stroke rehabilitation) annotated the dataset to implement
our approach and compute expert’s agreement level. They
individually watched the recorded videos of patient’s exercise
movements and annotated the performance components of
exercise motion dataset. For the frame level annotation of
‘Compensation’ performance component, two expert annota-
tors reviewed the images that are extracted from the recorded
videos with the corresponding sampling frequency and the
FFmpeg tool [23]. The annotations of experts are compared
to measure expert’s agreement on F1-scores (i.e. ‘Expert’ in
Table II and III). We utilize the annotation of an expert, who
evaluated the functional abilities of patients with Fugl Meyer
Assessment and had more experience as the ground truth.

The collected dataset is divided into ‘Training’ and ‘User’
data as follows:
• ‘Training Data’ (Figure 1a) is composed of 140 unaffected

motions and 140 affected motions from 14 post-stroke
subjects to train a machine learning (ML) model.

• ‘User Data’ (Figure 1a) includes 10 unaffected motions
and 10 affected motions of a testing post-stroke subject.

B. Evaluation

We apply Leave-One-Subject-Out (LOSO) cross valida-
tion on post-stroke patients to evaluate our approach. A
machine learning model (ML) is trained with data from all
subjects except one testing post-stroke subject. An initial
rule-based (RB) model is developed from the interviews with



therapists. A hybrid model applies a weighted average to
integrate a trained, outperforming ML model with a rule-
based model. All models (e.g. rule-based, machine learning,
hybrid) are tested with affected motions of the left-out post-
stroke patient. This process is repeated fifteen times to assess
all post-stroke patients’ affected motions. In addition, we
analyze the effect of tuning a model with held-out unaffected
motions of the left-out post-stroke subject. We also explore
different numbers of multiple consecutive Vf frames on
our ensemble voting method for frame-level assessment (i.e.
Vf = 1, ..., 30). For the performance metric, this work
utilizes a F1-score that computes the harmonic mean of
precision and recall for a more realistic measure of a model.

VI. RESULTS

Table II summarizes the performances of models, which
measure an agreement with ground truth labels by computing
average F1-scores on performance components of three exer-
cises. For machine learning (ML) models, we explore various
approaches: a decision tree (ML-DT), a linear regression
model (ML - LR), a support vector machine (ML - SVM), a
neural network (ML - NN), and a long short term memory
network (ML-LSTM). The parameters of machine learning
models (i.e. hidden layers/units and learning rates of neural
networks and LSTM networks) that achieve the best F1-
score during leave-one-subject-out (LOSO) cross validation
are summarized in Table IV.

In addition, we present the performance of the initial rule-
based model (RB-Init) from the interviews with therapists
and that of the fine-tuned rule-based model (RB-tuned) after
accommodating held-out user’s unaffected motions to tune
threshold values for personalized assessment. The parameters
of rule-based models (i.e. the range of the threshold value
with 2σ or 3σ) are selected to achieve the best F1-score
during validation: 3σ is utilized over three performance
components of three exercises except for the ‘ROM’ and
‘Smoothness’ of both Exercise 1 and 2.

For hybrid models (HMs), we describe the performance
of the initial hybrid model (HM-Init) that integrates the out-
performing, machine learning model (i.e. Neural Networks
- ML-NN) with the initial rule-based model (RB-Init) and
that of the tuned hybrid model (HM-tuned) that combines
the ML-NN with the tuned rule-based model (RB-Tuned).

For machine learning (ML) models, Neural Networks
(ML-NN) achieve a good agreement level with ground truth
annotations (i.e. 0.7899 average F1-score over all exercises)
and outperform other algorithms (p < 0.01 using a paired
t-test over three exercises and three performance compo-
nents in Table III): Decision Trees (0.7014 average F1-
score), Linear Regression (0.6785 average F1-score), Sup-
port Vector Machines (0.7055 average F1-score), and Long
Short Term Memory Networks (0.6736 average F1-score).
Although most machine learning practitioners consider se-
quential modeling with recurrent neural networks (RNNs),
our results show that a neural network architecture (i.e. ML-
NN) performs better to model the task of assessing both
frame-level and overall quality of motion than recurrent

TABLE II: Performances (avg. ± std. of F1-scores) of
machine learning (ML) models, rule-based (RB) models,
hybrid models (HMs), and expert’s agreement. ‡ indicates
HM-Tuned performs statistically better than the compared
method (pairwise t-tests at 99% significance level).

Algorithm Exercise 1 Exercise 2 Exercise 3 Overall

ML-DT ‡ 0.7308 ± 0.0584 0.6848 ± 0.2032 0.6887 ± 0.0805 0.7014 ± 0.0255
ML-LR ‡ 0.7164 ± 0.0234 0.6323 ± 0.0877 0.6867 ± 0.0618 0.6785 ± 0.0426

ML-SVM ‡ 0.7390 ± 0.0148 0.6441 ± 0.1053 0.7334 ± 0.0245 0.7055 ± 0.0533
ML-NN 0.8428 ± 0.0809 0.7549 ± 0.1026 0.7720 ± 0.0433 0.7899 ± 0.0466

ML-LSTM ‡ 0.7509 ± 0.0346 0.5886 ± 0.0608 0.6813 ± 0.0574 0.6736 ± 0.0814

RB-Init ‡ 0.6148 ± 0.2086 0.6707 ± 0.1758 0.4626 ± 0.2102 0.5827 ± 0.0541
RB-Tuned 0.8317 ± 0.0784 0.8009 ± 0.1238 0.7543 ± 0.0248 0.7957 ± 0.0390

HM-Init ‡ 0.8069 ± 0.0946 0.7060 ± 0.1318 0.7212 ± 0.0851 0.7447 ± 0.0679
HM-Tuned 0.8601 ± 0.1030 0.7769 ± 0.1317 0.8334 ± 0.1142 0.8235 ± 0.0425

Expert 0.7908 ± 0.2146 0.8222 ± 0.1534 0.7196 ± 0.1754 0.7775 ± 0.0526

neural networks (i.e. ML-LSTM) similar to prior work [24]
that showed the absence of the advantage of RNNs on various
tasks in practice (e.g. natural language and audio processing).

The initial rule-based model (RB-Init) achieves the lowest
performance: 0.5827 average F1-score over all exercises.
According to the further analysis on the initial rule-based
model, we found that such low performance occurred, be-
cause elicited rules from therapists are generic and not
tuned for individuals with different physical conditions. For
instance, one rule of assessing the ‘Compensation’ perfor-
mance component is to check whether the x-coordinate of
a shoulder joint is located more than the 15% of the initial
position. We found that even if affected motions of some
patients are annotated as normal and performed without
the compensated shoulder joint, the shoulder joint of those
motions is located around 20% of the initial positions and
mis-classified as compensated motions. This indicates the
importance of generating personalized rules for patients with
various physical characteristics and functional abilities.

The initial hybrid model (HM-Init) achieves 0.7447 av-
erage F1-score over all exercises. As the initial rule-based
model has the limited performance, the initial hybrid model
(HM-Init) that integrates the ML model with Neural Net-
works (ML-NN) and the initial RB model (RB-Init) leads
to slightly lower performance than that of the ML-NN (i.e.
0.7899 average F1-score over all exercises). However, the
HM-Init still outperforms other ML models (e.g. ML-DT,
ML-LR, ML-SVM, and ML-LSTM).

To evaluate the feasibility of tuning a model for person-
alized assessment, we update the threshold values of a rule-
based model with held-out patient’s unaffected motion (as
described in Section IV-C) and implement the tuned rule-
based model (RB-Tuned) and tuned hybrid model (HM-
Tune) that integrates the ML-NN model with the RB-Tuned
model. Both RB-Tuned and HM-Tuned models significantly
improve their performance to replicate therapist’s assessment
(p < 0.01 using the paired t-tests over three performance
components of three exercises in Table III). Specifically,
the RB model significantly improves its performance around
37% from 0.5821 to 0.7957 average F1-scores over all
exercises (p < 0.01). In addition, the hybrid model (HM)



TABLE III: Performances (average ± standard deviation of F1-scores) of various methods (i.e. machine learning, rule-based,
and hybrid models) to assess the quality of motion. Best results of each column are boldfaced. ‡ indicates that the HM-Tuned
performs statistically better than a compared method (pairwise t-tests at 99% significance level).

Algorithm Exercise 1 Exercise 2 Exercise 3
ROM Smooth Comp ROM Smooth Comp ROM Smooth Comp

ML-DT ‡ 0.7192 ± 0.3968 0.6791 ± 0.3865 0.7942 ± 0.0661 0.8919 ± 0.2448 0.4857 ± 0.4178 0.6767 ± 0.1116 0.6037 ± 0.3963 0.6986 ± 0.3499 0.7638 ± 0.0682
ML-LR ‡ 0.6912 ± 0.4247 0.7375 ± 0.4048 0.7205 ± 0.1136 0.7335 ± 0.3732 0.5787 ± 0.4789 0.5848 ± 0.2122 0.7139 ± 0.3876 0.7302 ± 0.3771 0.6160 ± 0.0754

ML-SVM ‡ 0.7251 ± 0.4136 0.7375 ± 0.4048 0.7545 ± 0.0776 0.7655 ± 0.3475 0.5787 ± 0.4789 0.5880 ± 0.2078 0.7593 ± 0.3811 0.7302 ± 0.3771 0.7107 ± 0.0642
ML-NN 0.9324 ± 0.1350 0.7751 ± 0.3600 0.8210 ± 0.0755 0.8696 ± 0.2852 0.6721 ± 0.4642 0.7229 ± 0.1354 0.7220 ± 0.2853 0.7969 ± 0.3272 0.7970 ± 0.0345

ML-LSTM ‡ 0.7902 ± 0.3968 0.7375 ± 0.4048 0.7249 ± 0.1073 0.5333 ± 0.4989 0.5787 ± 0.4789 0.6537 ± 0.1425 0.6568 ± 0.4659 0.7469 ± 0.3645 0.6403 ± 0.0577

RB-Init ‡ 0.8432 ±0.3094 0.4344 ± 0.3910 0.5669 ± 0.4340 0.8466 ± 0.2886 0.4950 ± 0.4094 0.6705 ± 0.4173 0.5320 ± 0.4632 0.2265 ± 0.3140 0.6294 ± 0.3590
RB-Tuned 0.9091 ± 0.2471 0.7524 ± 0.3494 0.8337 ± 0.0336 0.9405 ± 0.1382 0.7044 ± 0.3704 0.7579 ± 0.0365 0.7797 ± 0.3388 0.7302 ± 0.3771 0.7531 ± 0.0511

HM-Init ‡ 0.9148 ± 0.1636 0.7680 ± 0.3648 0.7379 ± 0.3867 0.8419 ± 0.3156 0.5787 ± 0.4789 0.6975 ± 0.4269 0.8035 ± 0.2335 0.7267 ± 0.3748 0.6335 ± 0.4500
HM-Tuned 0.9714 ± 0.0555 0.7680 ± 0.3648 0.8410 ± 0.0821 0.9050 ± 0.2215 0.6419 ± 0.4605 0.7837 ± 0.0647 0.9616 ± 0.0700 0.7424 ± 0.3558 0.7963 ± 0.0221

Expert 0.9587 ± 0.0489 0.5490 ± 0.0011 0.8646 ± 0.2127 0.9630 ± 0.0427 0.6588 ± 0.1384 0.8449 ± 0.1408 0.7342 ± 0.2418 0.5373 ± 0.1148 0.8872 ± 0.1021

also significantly improves its performance around 11% from
0.7447 to 0.8235 average F1-scores over all exercises (p <
0.01) and outperform other approaches. The performance of
the tuned hybrid model (HM-tuned) is better than those of the
machine learning model with Neural Networks (ML-NN) and
the RB-tuned around 0.03 average F1-score (i.e. 4% and 3%
improvement respectively without statistical significance).

To analyze the effect of our ensemble voting method for
frame-level assessment, we utilize the ML-NN, RB-Tuned,
and HM-Tuned models and plot their average performance of
detecting frame-level compensation on head, spine, shoulder
joints over three exercises with various numbers of consecu-
tive frames (Vf = 1, ..., 30). In Figure 4, all three models (i.e.
ML-NN, RB-Tuned, HM-Tuned) improve their performance
while leveraging prediction from multiple frames and achieve
their best performance with Vf = 29. When we compare the
performance of a model without and with an ensemble voting
method (Vf = 1 and Vf = 29), the ML-NN model improves
its performance from 0.7723 (Vf = 1) to 0.7803 (Vf = 29)
average F1-score (p < 0.01 using the paired t-tests over
three compensations of three exercises); the RB-Tuned model
improves its performance from 0.7655 (Vf = 1) to 0.7816
(Vf = 29) average F1-score (p < 0.01); the HM-Tuned
model improves its performance from 0.7975 (Vf = 1) to
0.8070 (Vf = 29) average F1-score (p < 0.01).

VII. DISCUSSION

Among various approaches, the machine learning model
with Neural Networks (ML-NN), tuned rule-based model
(RB-tuned), and the initial and tuned hybrid models (HM-Init
and HM-tuned) have equally good performance with expert’s
agreement from the paired t-tests over three performance
components of three exercises. In addition, all models with
an ensemble voting method can leverage predictions from
multiple consecutive frames to improve their frame-level
assessment and inform a user when an erroneous motion
has occurred.

As a rule-based (RB) model does not require the data
collection process, a RB model could be considered as a
natural starting point to develop a robotic exercise coaching
system that can assess the quality of motion and generate
corrective feedback on patient’s exercises [4], [5]. However,

Fig. 4: Performance of frame-level assessment with different
values of consecutive frames (Vf ) using the tuned rule-based
model (RB-Tuned), machine learning model with neural
networks (ML-NN), tuned hybrid model (HM-Tuned)

a RB model with generic threshold values (e.g. RB-Init and
[6], [7], [9], [11], [13]) does not perform well to evaluate
exercises of patients with various physical conditions. Thus,
it is important to have an interactive approach that can tune
a RB model with individual’s held-out unaffected motions
to derive personalized threshold values for assessment and
corrective feedback.

As a robotic coaching system is deployed and annotated
data is collected, a machine learning (ML) model (e.g. neural
networks) can be trained to extract new insights of assessing
exercises from data. However, it is not recommended to
simply replace a rule-based (RB) model with a ML model
using a complex, black-box algorithm. For instance, given a
patient’s affected motion that is incorrectly performed with
compensation, a ML model with Neural Networks can just
notify whether the compensation has occurred or not. In
contrast, our interactive hybrid model can predict assessment
with improved performance, but also identify which feature
has been violated with a rule-based model: the violation on
the head in the z-axis and the shoulder in the y-axis for
Figure 2b. Such feature-level analysis can be realized into the



following personalized corrective feedback: “Keep your head
straight and do not raise your shoulder”. Thus, after data
collection, a hybrid model is recommended to accommodate
new generic insights from data and support a transparent and
personalized interaction between a robot and a user.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present an interactive approach with
an ensemble voting method for a robotic exercise coach-
ing system that integrates a data-driven machine learning
model with an interpretable rule-based model and tunes
with patient’s data for transparent, personalized interaction
with corrective feedback on patient’s stroke rehabilitation
exercises. This work shows that interactive approach achieves
good agreement with expert’s annotation, and discusses the
importance of an interactive approach to tune a model
with patient’s motions for personalized assessment and an
ensemble voting method to improve frame-level assessment.

For automated assessment capability of a robotic exercise
coaching system, an interactive rule-based model can be
regarded as a starting point. In addition, after data collection,
our work emphasizes the importance of creating a model
with interpretability instead of just applying a complex deep
learning model. We discuss that a hybrid model can augment
a rule-based model with new insights on data from a machine
learning model, but also support transparent and personalized
interaction of a robotic exercise coaching system.

For the interaction with a patient, we utilize our presented
approach and implement a robotic coaching system that
can show the tracked joints of a patient’s exercise motion
and predicted assessment in a visualization interface, but
generate real-time audio corrective feedback and gestures
from a robot (Figure 1c). In future, we plan to explore the
effect of personalized corrective feedback from a robotic
exercise coaching system to support therapeutic rehabilitation
sessions with post-stroke patients.

APPENDIX

TABLE IV: Parameters of Machine Learning Models

Hidden Layers and Units / Learning Rate

ROM Smoothness Comp

E1 - NN: (256, 256, 256) / 0.005
- LSTM: (16, 16, 16) / 0.0001

- NN: (16) / 0.0001
- LSTM: (16) / 0.005

- NN: (512, 512, 512) / 0.005
- LSTM: (16) / 0.005

E2 - NN: (32, 32, 32) / 0.01
- LSTM: (16) / 0.0001

- NN: (32) / 0.0001
- LSTM: (16) / 0.0001

- NN: (256, 256) / 0.0001
- LSTM: (16) / 0.0001

E3 - NN: (16) / 0.005
- LSTM: (32) / 0.0001

- NN: (128) / 0.0001
- LSTM: (16) / 0.005

- NN: (256, 256, 256) / 0.1
- LSTM: (16, 16, 16) / 0.0001
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