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ABSTRACT
Automated assessment of rehabilitation exercises using machine
learning has a potential to improve current rehabilitation practices.
However, it is challenging to completely replicate therapist’s deci-
sion making on the assessment of patients with various physical
conditions. This paper describes an interactive machine learning
approach that iteratively integrates a data-driven model with ex-
pert’s knowledge to assess the quality of rehabilitation exercises.
Among a large set of kinematic features of the exercise motions, our
approach identifies the most salient features for assessment using
reinforcement learning and generates a user-specific analysis to
elicit feature relevance from a therapist for personalized rehabilita-
tion assessment. While accommodating therapist’s feedback on fea-
ture relevance, our approach can tune a generic assessment model
into a personalized model. Specifically, our approach improves
performance to predict assessment from 0.8279 to 0.9116 average
F1-scores of three upper-limb rehabilitation exercises (𝑝 < 0.01).
Our work demonstrates that machine learning models with feature
selection can generate kinematic feature-based analysis as expla-
nations on predictions of a model to elicit expert’s knowledge of
assessment, and how machine learning models can augment with
expert’s knowledge for personalized rehabilitation assessment.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Applied computing → Health care information systems; •
Theory of computation → Sequential decision making.
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1 INTRODUCTION
Patientswithmusculoskeletal and neurological disorders (e.g. stroke)
require physical rehabilitation programs for several months to re-
store their functional ability and enhance their quality of life. Dur-
ing a rehabilitation program, therapists assess patient’s functional
status and provide corrective feedback. As therapists cannot ob-
serve all exercise trials of a patient, they prescribe home exercise
regimens [33]. In the follow-up visits, therapists rely on a patient’s
self-report to discuss patient’s progress and decide how to adjust
exercise regimens [33]. However, therapists have difficulty with
making informed decision on adjusting treatment interventions
without observing patient’s exercises or quantitative exercise data
[18].

Advanced sensor and machine learning technologies have a
potential to automatically monitor and assess patient’s status to
support physical rehabilitation [42]. Previous work on computer-
assisted rehabilitation monitoring and assessment can be catego-
rized into rule-based and data-driven approaches [38]. A rule-based
approach derives a set of monitoring rules through the involvement
of experts in the design process [16]. However, it is difficult to prop-
erly articulate an expert’s decision making process on a complex
monitoring task.

Alternatively, a data-drivenmodel utilizes machine learning algo-
rithms with labeled sensor data to automatically extract a meaning-
ful function (e.g. Neural Network model) for assessing the quality
of motion [6, 28, 35]. However, it is challenging to derive a model
that can replicate therapist’s assessment for every patient, given
that each patient has different physical characteristics. In addition,
when a model with complex algorithms fails to correctly assess
rehabilitation exercises and does not provide any explanations to
support therapist’s decision making, therapists can lose trust and
abandon it [20, 22].

In this paper, we describe and evaluate an interactive hybrid
approach that integrates a data-driven model with expert’s knowl-
edge on kinematic features to assess the quality of motion (Figure
1). Our approach utilizes the dataset of three upper-limb rehabilita-
tion exercises from 15 post-stroke and 11 healthy subjects with the
corresponding assessment scores by expert therapists [28]. From
this dataset, we apply reinforcement learning to identify the most
important features for assessment and learn a machine learning
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Figure 1: Flow diagram of an interactive hybrid approach
for rehabilitation assessment that combines a data-driven
model and a rule-based knowledgemodel. Data-drivenmod-
els automatically select features and predict the quality of
motion to generate a patient-specific report. A therapist can
review this report and provide feature-based feedback to
tune a model for personalized rehabilitation assessment

model to predict the scores on the exercises of patients using leave-
one-subject-out cross validation. For the development of the initial
rule-based Knowledge Model (KM), we conducted semi-structured
interviews with therapists to elicit their knowledge of assessing
rehabilitation exercises. The data-driven Prediction Model and rule-
based Knowledge Model are integrated with a weighted average
ensemble technique [4] to derive the Hybrid Model (HM) for as-
sessment.

Once a new patient performs the exercise with patient’s unaf-
fected and affected side, the visualization interface of our approach
(Figure 2) shows a patient-specific analysis: the predicted quality of
motion on three performance components (i.e. ‘Range of Motion’,
‘Smoothness’, ‘Compensation’) and the comparison between unaf-
fected and affected sides on the most important kinematic features.
Therapists can review this analysis to better understand patient’s
performance and provide feedback (e.g. feature relevance) to tune
a model for personalized rehabilitation assessment.

After implementing our approach, we performed a user study
with therapists to evaluate our approach and explore the effect of
accommodating therapist’s feedback for personalized rehabilita-
tion assessment. Our experimental results demonstrate that our
approach can iteratively elicit therapist’s feature-based feedback to
significantly improve performance of a model from 0.8377 to 0.9116
average F1-scores on three exercises (𝑝 < 0.01).

This paper makes the following contributions:

• present an interactive hybrid, machine learning approach
that can identify salient features for assessment and present
a user-specific analysis to iteratively accommodate expert’s
feedback for personalized rehabilitation
• describe the evaluation of our approach with therapists to
explore whether therapists can accurately personalize the
predictions of machine learning-based rehabilitation assess-
ment

Although prior work demonstrated the feasibility of monitoring
and assessing rehabilitation exercises [42], there is a lack of evalu-
ations on how such technologies can be utilized by therapists. To
the best of our knowledge, this paper describes the first evaluation
on how data-driven machine learning systems can augment with
therapist’s feedback for personalized rehabilitation assessment.

2 RELATEDWORK
Researchers have explored the feasibility of monitoring and assess-
ing chronic diseases with computational models [42], which can
assist therapists to obtain insights on patient’s status.

One approach is to elicit a set of monitoring rules from domain
experts [38]. For instance, Huang explored an authoring tool that
enables a therapist to specify repetitions and joint angles for moni-
toring knee rehabilitation exercises [16]. This rule-based approach
can be easily modularized and recombined to develop a customized
monitoring model. However, it is time consuming to manually de-
termine which sensor measurement could be utilized to monitor
an individual status. Moreover, experts might have difficulty with
articulating their complex and abstract decision making process
into a set of rules.

Another approach is to utilize machine learning with labeled
sensor data [38] and automatically learn a meaningful model (e.g.
Neural Networks) to assess the quality of motion [6, 28, 35]. How-
ever, as patients have various physical functional abilities, it is
challenging to perfectly replicate therapist’s assessment. When a
model with complex algorithms cannot explain its prediction to
support expert’s decision making [13], it can exacerbate therapist’s
user experience and trust, which impedes its adoption in practices
[20, 22].

Explainability [5, 7, 8] and interactive machine learning [1, 10,
15] have been an active area of research to create better machine
learning models with improved transparency and user acceptance.
Prior work on interactive machine learning has demonstrated the
feasibility to refine the classification of a system while presenting
relevant information of a task and acquiring inputs of a user. For
instance, users can provide feedback on constraints of a model [19],
weights of features [24], or feature relevance [23, 31] to tailor the
behavior of a model.

Our work aims to increase the interpretability on a prediction
model by feature selection [5, 21]. Specifically, we apply reinforce-
ment learning [41] to identify salient features for assessment. Utiliz-
ing an identified subset of features, we predict the quality of motion
and generate a user-specific analysis to summarize patient’s exer-
cise performance. This user-specific analysis will be presented to
therapists in a visualization interface to improve their understand-
ing on patient’s performance [29].

In addition, this paper validates that our approach can present a
user-specific analysis and elicit expert’s feedback on feature rele-
vance to iteratively update a model and improve performance on
predictions for personalized rehabilitation assessment [27]. While
interactive machine learning techniques have been applied to vari-
ous tasks (e.g. text classification [23] and image search [12]), the
application on a health domain seems to be elusive [15]. This work
contributes to increase the knowledge on how machine learning
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(a) (b) (c) (d)

Figure 2: The visualization interface of the proposed system that presents (a) the video of patient’s exercise motions and the
predicted quality of motion with (b) overall feature analysis with three most important features, (c) detailed feature analysis
with a specified threshold value of the feature for assessment, and (d) trajectory trends between unaffected and affected side.

models can iteratively augment with therapist’s feedback for per-
sonalized rehabilitation assessment.

3 STROKE REHABILITATION AS A TEST
DOMAIN

Stroke is the second leading cause of death and third most common
contributor to disability [11]. Thus, we selected stroke rehabilitation
as a probe domain. We recruited three therapists of stroke rehabili-
tation from two rehabilitation centers to specify the design of our
study (i.e. exercises and performance components for assessment).

After having iterative discussion with three therapists (TP 1,
TP2, and TP3 with ` = 6.33, 𝜎 = 2.05 years of experience in stroke
rehabilitation) in Table 1, we specified the design of our study to
assess stroke patient’s rehabilitation exercises.

3.1 Three Task-Oriented Upper Limb Exercises
This paper utilizes three upper-limb stroke rehabilitation exercises
(Figure 3), recommended by therapists [25]. In Figure 3, the ‘Initial’
label indicates the initial position of an exercise and the ‘Target’
label describes the desired end position of an exercise.

For Exercise 1, a subject has to raise subject’s wrist to the mouth
as if drinkingwater. For Exercise 2, a subject has to pretend touching
a light switch on the wall. For Exercise 3, a subject has to practice
the usage of a cane by extending subject’s elbow in the seated
position. These exercises are selected due to their correspondence
with major motion patterns: elbow flexion for Exercise 1, shoulder
flexion for Exercise 2, elbow extension for Exercise 3.

3.2 Performance Components
After reviewing commonly used stroke assessment tools (i.e. Fugl
Meyer Assessment [37] and Wolf Motor Function Test [40]) and
having iterative discussion with therapists, three common perfor-
mance components and their scoring guidelines for therapists are
specified to assess the quality of motion: ‘Range of Motion (ROM)’,
‘Smoothness’, and ‘Compensation’ (Table 2). For binary labels, a score
2 indicates a correct/normal performance component (𝑦 = 1), and

Table 1: The participants of the specification, of the anno-
tation, of the rule elicitation (ElicitRule), and of the rela-
belling (Relabel), and of the feature elicitation (ElicitFeat)

ID Studies # of Years in
Stroke RehabSpecification Annotation ElicitRule ElicitFeat

TP1 6
TP2 4
TP3 9
TP4 4
TP5 1
TP6 6
TP7 5

(a) (b) (c)

Figure 3: (a) Exercise 1 (E1): ‘Bring a Cup to the Mouth’ (b)
Exercise 2 (E2): ‘Switch a Light On’ (c) Exercise 3 (E3): ‘Move
a Cane Forward’

both score 1 and 0 describe an incorrect/abnormal performance
component (𝑦 = 0).

The ‘ROM’ component describes how closely a patient performs
a task-oriented exercise. The ‘Smoothness’ component indicates
the degree of trembling and irregular movement of joints while
performing an exercise. The ‘Compensation’ component checks
whether a patient performs any compensatedmovements to achieve
a target movement. For instance, a patient might elevate his/her
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Table 2: Guidelines toAssess StrokeRehabilitationExercises

Performance
Components Score Guidelines

Range of Motion
(ROM)

0 Does not or barely involve any movement
1 Less than half way aligned with an ‘Target’ position
2 Movement achieves an ‘Target’ position

Smoothness
0 Excessive tremor or not smooth coordination
1 Movement influenced by tremor
2 Smoothly coordinated movement

Compensation
0 Noticeable compensation in more than two joints
1 Noticeable compensation in a joint
2 Does not involve any compensations

(a) Unaffected (b) Affected (c) Unaffected (d) Affected

Figure 4: Two patients performing Exercise 1 with different
compensated motions: the patient on the left has elevated
shoulder with trunk rotation and the patient on the right
has elevated shoulder with leaning backward.

shoulder to raise the affected hand as shown in Figure 4b and 4d.
Each patient might have different compensated movements based
on patient’s functional status: one patient has elevated shoulder
with trunk rotation (Figure 4b) and the other patient has elevated
shoulder with leaning backward (Figure 4d).

3.3 Features
This work represents an exercise motion with sequential joint co-
ordinates from a Kinect v2 sensor (Microsoft, Redmond, USA) and
extracts various kinematic features.

For the ‘ROM’ component, we compute joint angles (e.g. elbow
flexion, shoulder flexion, elbow extension), and normalized relative
trajectory (i.e. Euclidean distance between two joints - head and
wrist, head and elbow).

For the ‘Smoothness’ component, we compute various speed
related features: the speed, acceleration, jerk, zero crossing ratio of
acceleration and jerk, and Mean Arrest Period Ratio (the portion of
the frames when speed exceeds 10% of the maximum speed) [28].
As we have upper-limb exercises, we computed these speed related
features on wrist and elbow joints.

For the ‘Compensation’ component, we compute joint angles (i.e.
the elevated angle of a shoulder, the tilted angle of head, spine,
and shoulder abduction) and normalized trajectories (the distance
between joint positions of head, spine, shoulder joints in x, y, z axis
from the initial to the current frames) to distinguish a compensated
movement.

Before extracting features, we apply a moving average filter with
the window size of five frames to reduce noise of acquiring joint

positions from a Kinect sensor similar to [28]. For each exercise
motion, we compute a feature matrix (F ∈ 𝑅𝑡×𝑑 ) with 𝑡 frame and 𝑑
features, and statistics (i.e. max, min, range, average, and standard
deviation) over all frames of the exercise to summarize a motion
into a feature vector (𝑥 ∈ 𝑅5𝑑 ). In summary, the ‘ROM’ has 30
features, the ‘Smoothness’ has 60 features, and the ‘Compensation’
has 65 features.

4 INTERACTIVE HYBRID APPROACH FOR
REHABILITATION ASSESSMENT

Automated machine learning approaches make great progress in
various fields that can afford a large dataset (e.g. speech recognition
[3] and autonomous vehicles [44]). However, the healthcare domain
often involves a small dataset, which makes the application of
automated approaches difficult or even impossible [15]. Interactive
machine learning approach seems to be a promising approach while
making use of human cognitive abilities [10, 23, 26].

This paper presents an interactive hybrid approach (Figure 1),
which aims at integrating the benefits of a data-driven Prediction
Model (PM), and a rule-based Knowledge Model (KM) with thera-
pist’s feedback. Our approach can automatically identify the most
salient features to predict the quality of motion and generate a
user-specific analysis that compares those identified features of
patient’s affected and unaffected motions. This user-specific analy-
sis can assist therapists to gain new insights on patient’s exercise
motions and provide their domain knowledge on feature relevance.
Utilizing elicited feature relevance, our approach can iteratively
update the rule-based KMs for personalized rehabilitation assess-
ment. In the following subsections, we describe the components
of our approach: dynamic feature selection using reinforcement
learning, Prediction Model (PM), Knowledge Model (KM), Hybrid
Model (HM), and visualization interface.

4.1 Dynamic Feature Selection using
Reinforcement Learning

Kinematic feature analysis is an important source for therapists to
quantitatively and objectively understand patient’s performance
[43]. Yet, simply presenting all features can overwhelm therapists
and limit therapist’s ability to gain insights on patient’s perfor-
mance. As therapists have limited availability to administrate mul-
tiple patients, therapists should minimize the amount of time on
analyzing kinematic features while accurately diagnosing patient’s
status. Thus, we aim at automatically identifying salient features of
assessment to learn a sparse Prediction Model (PM) and generate
an interpretable and succinct patient-specific report.

The classical approaches of feature selection (e.g. filter, wrap-
per, embedded methods) [39] find a fixed feature set to the entire
training dataset for all patients. In contrast, this paper applies a
Markov Decision Process (MDP) [17] to find the optimal feature set
for each patient’s motions. As each patient has different physical
and functional status (Figure 4), we hypothesize that feature selec-
tion with MDP can perform better than classical feature selection
approaches for personalized rehabilitation assessment.

4.1.1 Problem Definition. We formulate this problem of feature
selection as Markov Decision Process (MDP), where each episode
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is to classify an instance and the environment is the power set of
the feature space. An agent sequentially determines whether to
query an additional feature or classify a sample while receiving
a negative reward for recruiting a feature or mis-classification.
To solve this problem, we apply Deep Q-network with Double
Q-learning [32, 41].

We mathematically describe the Markov Decision Process (MDP)
with similar notations of [9, 17] as follows:

Let (𝑥,𝑦) ∈ D = X ×Y be a sample from a dataset. 𝑥 indicates
a vector of feature values, where 𝑥𝑖 is the value of a feature 𝑓𝑖 ∈
F = {𝑓1, ..., 𝑓𝑛}, 𝑛 is the number of features, and 𝑦 is the class label.
Let F̄ be the set of currently recruited features and the function
𝑐 : F → R≤0 be the cost of adding a feature in F .
• State Space (S): Let state be 𝑠 = (𝑥,𝑦, F̄ ) ∈ S and an ob-
servation of the agent, recruited features without the label be
𝑠 ′ = {(𝑥𝑖 , 𝑓𝑖 ) | ∀ 𝑓𝑖 ∈ F̄ }.
• Action Space: Let A = A𝑓 ∪ A𝑐 denote the action set. The
agent can take either the action of selecting a feature A𝑓 = F ,
which is limited to features that are not selected, or the action of
classifying an instance A𝑓 = Y to terminate an episode.
• Reward: Let the reward function be defined as

𝑟 (𝑠, 𝑎) = 𝑟 ((𝑥,𝑦, F̄ ), 𝑎) =


𝑐 (𝑓𝑖 ) if 𝑎 = 𝑓𝑖 ∈ A𝑓
−1 if 𝑎 ≠ 𝑦 ∈ A𝑐
0 if 𝑎 = 𝑦 ∈ A𝑐

We apply the uniform cost of selecting a feature: ∀𝑓𝑖 , 𝑐 (𝑓𝑖 ) = −_,
where _ = 0.01. The agent receives a reward of -1 for incorrect
classification and a reward of 0 for correct classification.
• Transition: Let the transition function be

𝑝 (𝑠, 𝑎) = 𝑝 ((𝑥,𝑦, F̄ ), 𝑎) =
{
(𝑥,𝑦, F ∪ 𝑎) if 𝑎 ∈ A𝑓
𝑇𝑆 if 𝑎 ∈ A𝑐

,

where 𝑇𝑆 is the terminal state after outputting the classification
and revealing the true label.

4.1.2 Implementation Details. We utilize ‘PyTorch’ libraries [34] to
implement a neural network with parameters \ (𝑄\ ) for deep Q-
learning [32]. The input layer of the network consists of feature and
binary mask vectors [17]. This masking input vector is to indicate
whether a feature is recruited or not. Specifically, we let𝑚 ∈ {0, 1}𝑛
be an n-dimensional vector for an environment of 𝑛 features, where
𝑚𝑖 = 1 if the agent has queried feature 𝑖 thus far in the episode and 0
otherwise. The target network is also used for the Prediction Model
(PM). The architectures and parameters of the PM are described in
the Table 5.

For training, we take a batch of transitions that are empirically
experienced by the agent with a greedy policy 𝜋\ (𝑠) = argmax𝑎
𝑄\ (𝑠, 𝑎), and apply RMSProp optimizer to minimize the following
loss function:

𝑙 (\ ) = E𝑠,𝑎 [(𝑟 (𝑠, 𝑎, 𝑠 ′) + 𝛾 max
𝑎′∈A

𝑄\ (𝑠 ′, 𝑎′) −𝑄\ (𝑠, 𝑎))2] (1)

where 𝑟 (𝑠, 𝑎, 𝑠 ′) indicates the received reward and 𝛾 indicates the
discounted factor. We clip a gradient if a gradient norm exceeds
1.0 [17] and update the target network after each step. Instead of
directly updating the weight of the target network, we apply soft
target updates [30]: \ ′ ← 𝜌\ + (1 − 𝜌)\ ′, where \ ≤ 1. 𝜌 denotes
this soft target update factor and is specified as 0.1. This soft target

updates can improve the stability of learning parameters of target
networks. As the application of soft target updates may lead to slow
learning, we apply an experience replay [32] for sampling efficiency.
Specifically, the environment with randomly drawn samples is
simulated and the transition data is recorded to the experience
replay buffer. As the environment is episodic with a short length,
we choose a value 1.0 for the discount factor 𝛾 . In addition, we
apply the 𝜖-greedy policy to control the exploration. Specifically, we
linearly decrease the 𝜖 value from the 𝜖𝑠𝑡𝑎𝑟𝑡 (0.5) to the 𝜖𝑒𝑛𝑑 (0.05)
with a step value, 𝜖𝑠𝑡𝑒𝑝 (0.02).

4.2 Prediction Model
The Prediction Model (PM) utilizes a supervised learning algorithm
and training data from all patients except a patient for testing to
predict the quality of motion or the posterior probability of be-
ing correct on a performance component, 𝑃𝑃𝑀 = 𝑃 (𝑦 = 1|𝑥). We
explore various traditional supervised learning algorithms: Deci-
sion Trees (DTs), Linear Regression (LR), Support Vector Machine
(SVM), Neural Networks (NNs) using the ‘Scikit-learn’ [36] and the
‘PyTorch’ libraries [34].

For DTs, we apply Classification and Regression Trees (CART)
to build prune trees. For LR models, we apply 𝐿1, 𝐿2 regularization
or linear combination of 𝐿1 and 𝐿2 (ElasticNet with 0.5 ratio) to
avoid overfitting. For SVMs, we apply either linear or Radial Ba-
sis Function (RBF) kernels with penalty parameter, 𝐶 = 1.0. The
parameters of NNs are grid-searched over various architectures
(i.e. one to three layers with 32, 64, 128, 256, 512 hidden units) and
different initial learning rates (i.e. 0.0001, 0.005, 0.001, 0.01, 0.1) to
have highest leave-one-subject-out cross-validation performance.
NN models applies the ‘ReLu’ activation functions and ‘AdamOpti-
mizer’ and are trained until the tolerance of optimization is 0.0001
or the maximum 200 iterations.

4.3 Knowledge Model
The Knowledge Model (KM) utilizes the set of feature-based rules
from therapists to estimate the quality of a motion. For the initial
development of the KM, we conducted semi-structured interviews
with two therapists to elicit their knowledge of assessing stroke
rehabilitation exercises. The expert knowledge of therapists is for-
malized as 15 independent if-then rules.

Let us denote a joint position as 𝑝 ( 𝑗, 𝑐), where 𝑗 specifies a joint
(e.g. 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 (𝑠ℎ), 𝑤𝑟𝑖𝑠𝑡 (𝑤𝑟 )), 𝑐 denotes a coordinate of joints in
the set 𝐶 ∈ {𝑐𝑥 , 𝑐𝑦, 𝑐𝑧 }. For example, the assessment on the ROM
component for Exercise 1 is specified as follows:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐿𝑎𝑏𝑒𝑙 =

{
‘Correct’ if 𝑝𝑚𝑎𝑥 (𝑤𝑟, 𝑐𝑦) >= 𝑝𝑚𝑎𝑥 (𝑠ℎ, 𝑐𝑦)
‘Incorrect’ else

This rule simply checks the maximum position of a wrist joint,
𝑝𝑚𝑎𝑥 (𝑤𝑟, 𝑐𝑦), related to that of a shoulder joint, 𝑝𝑚𝑎𝑥 (𝑠ℎ, 𝑐𝑦), in y-
coordinate to roughly estimate whether a patient achieves a target
position of Exercise 1 (Figure 6a). The score of being correct on
each performance component using KM can be computed using
the following equation:
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𝑃𝐾𝑀𝑇 =
1
|R𝑇 |

∑
𝑠∈𝑅𝑇

min( 𝑓𝑠
𝜏𝑠
, 1) (2)

where 𝑓𝑠 indicates the feature value of a rule 𝑠 from a trial (e.g.
𝑝𝑚𝑎𝑥 (𝑤𝑟, 𝑐𝑦) for the example above), 𝜏𝑠 describes the threshold
value of a rule 𝑠 (e.g. 𝑝𝑚𝑎𝑥 (𝑠ℎ, 𝑐𝑦) for the example above). R𝑇 de-
scribes the set of rules considered relevant by the therapists. min
function is applied so that this equation assigns a value of 1 if the
feature value of a rule exceeds the threshold of that rule. Other-
wise, the equation normalizes the feature value of a rule with the
threshold of a rule to compute the likelihood of being correct.

Furthermore, the KM can be iteratively updated with the elicited
expert’s feedback on salient features. Given the identified salient
features, our approach can generate a user-specific feature analysis
between patient’s unaffected and affected movements as shown
in Figure 2. For the example of Figure 2, a user-specfic analysis
describes that ‘Incorrect’ ROM is predicted due to smaller maximum
target position (affected: 0.66, unaffected: 0.98), maximum wrist
trajectory to head (affected: 0.55 / unaffected: 0.96), and maximum
elbow trajectory to head (affected: 0.29 / unaffected: 0.91). After
reviewing a user-specific feature analysis, therapists can indicate
whether presented features should be included or excluded [23] for
assessment. When including a feature, therapists have an option of
either utilizing the feature value of the unaffected side or specifying
a value for the threshold value of a feature-based rule (𝜏𝑠 ).

4.4 Hybrid Model
The Hybrid Model (HM) applies a weighted average, ensemble
technique [4] to integrate two perspectives on assessment: data-
driven, Prediction Model (PM) and rule-based, Knowledge Model
(KM) from therapists.

For the classification of the quality of motion, the Hybrid Model
(HM) computes the weighted average of prediction scores from two
models, in which the contribution of each model is weighted by
the performance of a model (i.e. the F1-score of each model in the
range of [0, 1]). Specifically, given a test sample (𝑥,𝑦), we compute
the prediction score of HM, 𝑃𝐻𝑀 as follows:

𝑃𝐻𝑀 =
𝜌𝑝𝑚

𝜌𝑝𝑚 + 𝜌𝑘𝑚𝑇

𝑃𝑃𝑀 +
𝜌𝑘𝑚𝑇

𝜌𝑝𝑚 + 𝜌𝑘𝑚𝑇

𝑃𝐾𝑀𝑇 (3)

where 𝑃𝑃𝑀 and 𝑃𝐾𝑀𝑇 indicate the scores of Prediction Model (PM)
and Knowledge Model (KM) at the 𝑇 iteration respectively, and
𝜌𝑝𝑚 and 𝜌𝑘𝑚𝑇 describe the F1-scores of PM and 𝐾𝑀𝑇 .

4.5 Visualization Interface
Based on the prior work that describes the needs of therapists
during stroke rehabilitation assessment [29] and the guidelines
of Human Artificial Intelligence (AI) interaction [2, 23], we im-
plemented the web-based visualization that presents the predicted
quality of performance components (e.g. ‘Range of Motion’, ‘Smooth-
ness’, ‘Compensation’) as well as an explanation on the prediction
of a model, a user-specific analysis that contains feature analysis,
detailed feature values, and trajectory trends (Figure 2).

According to the focus-group discussion with therapists from
five rehabilitation centers, therapists desire quantitative feature

analysis for more accurate assessment instead of repetitively watch-
ing a video of patient’s exercise motions and solely relying on their
own knowledge and experience [29]. To present “contextually rele-
vant information” [2] for the assessment, this interface presents a
video of patient’s exercisemotion alongwith a user-specific analysis
that includes predicted quality of motion, feature analysis (Figure
2b and 2c), and trajectory trends (Figure 2d).

To “make clear how well the system can do” [2], the performance
of a system is also included when presenting the predicted quality
of performance components (Figure 2b and 2c).

As therapists utilize patient’s unaffected motion as normality to
assess patient’s performance [29], this interface follows this current
practice, “social norms” [2], and includes the comparison between
the affected and unaffected side to present salient features (Figure
2b) and trajectory trends of three major joints (e.g. shoulder, elbow,
and wrist) for upper-limb exercises (Figure 2d).

To “avoid overwhelming” [23] therapists, this interface presents
only three salient features for each performance component with
the highest information gain. A radar chart is utilized to effectively
present multivariate data [29].

In addition, our interface supports to “honor user feedback” (e.g.
feature-based feedback) [23]. A feature-based feedback indicates
the relevance of an identified feature for the assessment or the
specification of a threshold value to generate a feature-based rule for
personalized rehabilitation assessment. We present the changes in
the performance of a model to support therapist’s decision making
(e.g. “Including Max. Target Position will increase the performance
(17%)” in Figure 2c).

Prior work conducted an user study with therapists to evaluate
the values of such an interface with predicted assessment and user-
specific analysis [29]. It shows that the interface with predicted
quality of motion and feature analysis improves therapist’s under-
standing on patient’s performance. Specifically, our approach with
predicted assessment and user-specific analysis assists therapists
to achieve significantly higher agreement level on evaluation (0.71
F1-score) than the baseline interface without prediction and user-
specific analysis (0.66 F1-score) (p < 0.05) [29]. Prior work [29] con-
firms that such an interface supports more consistent assessment,
and is preferred over the baseline interface without prediction and
analysis. The details on the evaluation of the interface is described
in [29].

5 EXPERIMENT FOR IMPLEMENTATION
5.1 Exercise Dataset
After the approval of ethics committee, we collected the dataset
of three upper limb exercises from 15 post-stroke and 11 healthy
subjects using a Kinect v2 sensor (Microsoft, Redmond, USA).

For the data collection, we implemented a program that records
the 3D trajectory of joints and video frames at 30 Hz. The program
was operated on a PC with 8GB RAM and i5-4590 3.3GHz 4 Cores
CPU and a sensor was located at a height of 0.72m above the floor
and 2.5m away from a subject. The starting and ending frames
of exercise movements were manually annotated during the data
collection.

All subjects signed the consent form before participating in the
data collection. Fifteen post-stroke patients (13 males and 2 females)
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participated in two sessions for data collection. During the first
session, a therapist evaluated post-stroke patient’s functional abil-
ity using a clinically validated tool, the Fugl Meyer Assessment
(FMA) (maximum score 66 points) [37]. 15 stroke survivors have
diverse functional abilities from mild to severe impairment (37 ±
21 Fugl Meyer Scores). During the second session, a stroke sur-
vivor performed 10 repetitions of each exercise with both affected
and unaffected sides. Eleven healthy subjects (10 males and 1 fe-
male) performed 15 repetitions with their dominant arms for each
exercise.

We divide the collected data into ‘Training’ and ‘User’ data as
follows:
• ‘Training Data’ (Figure 1) is composed of 165 unaffected mo-
tions from 11 healthy and 150 affected motions from 15 post-
stroke subjects to train a feature selection model and the Predic-
tion Model (PM).
• ‘User Data’ (Figure 1) includes each stroke survivor’s unaffected
and affected motions. Both unaffected and affected motions of
a testing post-stroke subject are excluded to train data-driven
models. Using testing subject’s affected motions, our approach
dynamically selects subject-specific features and predicts the
quality of motion on performance components. Both unaffected
and affected motions of a testing subject are utilized to generate
a user-specific analysis of the visualization interface (Figure 2).
Two therapists (TP 1 and 2 in Table 1) annotated the dataset

to implement our approach and compute the baseline agreement
level of therapists. They individually watched the recorded videos
of patient’s exercise movements (Figure 2a) and annotated the
performance components of exercise motion dataset. During the
annotation, they had no access to analysis of our system (Figure 2d,
2c, 2d). For implementation, we utilize the annotation of therapist 1
(TP 1), who had more interactions with recruited stroke patients by
supporting the recruitment and evaluation on their functional abil-
ity with Fugl Meyer Assessment. The annotation of therapist 2 (TP
2) is compared with that of TP1 to measure therapist’s agreement
on F1-scores in Table 3.

5.2 User Study with Therapists
To evaluate the feasibility of our interactive hybrid approach, we
recruited five therapists with ` = 4.00, 𝜎 = 1.67 years of experience
in stroke rehabilitation (i.e. TPs with check marks in the ‘ElicitFeat’
column of Table 1) and analyzed the effect of therapist’s feedback on
the system performance for predicting rehabilitation assessment. In
addition, we conducted semi-structured interviews with therapists
to understand a potential benefit of our approach in their workflow.

After signing the IRB approved consent form, each participant
was instructed on the task of providing feature-based feedback
with dummy data. Specifically, feature-based feedback includes the
following three options: 1) include or 2) remove a selected feature
for assessment, or 3) updating the threshold value of a selected
feature for assessment.

For the task, each participant was asked to provide feature-based
feedback to make the predicted quality of motion from the interface
as accurate as possible during a 30 minutes session. We assigned
non-overlapping, three patients for each participant to generate
feature-based feedback on all post-stroke survivors in our dataset.

Given each patient’s affected motions, our approach dynamically
selects salient features for assessing corresponding motions to pre-
dict the quality of motion and generate patient-specific analysis
(Figure 1). After reviewing an assigned patient’s user-specific anal-
ysis, participants provided nine feature-based feedback on each
patient. Lastly, we interviewed therapists about the possibility of
accepting our approach in the current practices.

6 RESULTS
6.1 Implementation
To evaluate the implementation of our approach, we apply Leave-
One-Subject-Out (LOSO) cross validation on post-stroke patients.
A model is trained with data from all subjects except one post-
stroke survivors and is tested with affected motions of the left-
out post-stroke survivor. This process is repeated fifteen times to
evaluate all post-stroke subjects’ affected motions. To generate
patient-specific analysis, held-out unaffected and affected motions
of the left-out post-stroke survivor are utilized. For the performance
metric, a F1-score is utilized as therapists considered that less false
positives (reporting normal when it is abnormal) and false negatives
(reporting abnormal when it is normal) are crucial.

For feature selection, we train a reinforcement learning model
with Neural Networks that sequentially decides whether another
feature is necessary to assess the quality of motion, which is de-
scribed in the Section 4.1. We illustrate the learning curve of train-
ing a reinforcement learning agent for feature selection by plotting
the average rewards and the average number of selected features.
Figure 5 demonstrates that an agent can identify the salient sub-
set of features and reduce the number of selected features. At the
same time, an agent improves its average rewards (i.e. the correct
assessment of exercise motions).

Figure 5: The average rewards and the average number of se-
lected features while training an agent for dynamic feature
selection

Table 3 summarizes the performance of our approach, which
measures the agreement with therapist’s evaluation using average
F1-scores of the three exercises. The performance of models for
individual performance components of each exercise (i.e. Range of
Motion, Smoothness, and Compensation) are described in Table 4.
The parameters of NNs (i.e. hidden layers/units and learning rate)
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(a) Exercise 1 (b) Exercise 2 (c) Exercise 3

Figure 6: The performance of models over therapist’s feature-based feedback: both Knowledge Model and Hybrid Model (HM)
improves its agreement level while accommodating therapist’s feature-based feedback. HM performs better than Prediction
Model with Neural Network and therapist’s agreement

Table 3: Performance (F1-scores) of interactive Hybrid
Model (HM 10), non-interactive Hybrid Model (HM 1), Uni-
modal models (PM with various approaches, KM 1, KM 10),
and Therapist’s agreement

Exercise 1 (E1) Exercise 2 (E2) Exercise 3 (E3) Overall

PM - RL 0.8331± 0.0059 0.7973 ± 0.0867 0.8053 ± 0.0496 0.8119 ± 0.0526
PM - RFE 0.6742 ± 0.0715 0.7628 ± 0.1708 0.6415 ± 0.0806 0.6928 ± 0.1147
PM - DT 0.6901 ± 0.0405 0.7645 ± 0.0867 0.6488 ± 0.0412 0.7011 ± 0.0769
PM - LR 0.7246 ± 0.0593 0.6430 ± 0.0982 0.7267 ± 0.0391 0.6981 ± 0.0801
PM - SVM 0.7232 ± 0.0364 0.6971 ± 0.0891 0.7410 ± 0.0052 0.7204 ± 0.0585
PM - NN 0.8632 ± 0.0816 0.8388 ± 0.0518 0.7818 ± 0.0096 0.8279 ± 0.0605

KM 1 0.6148 ± 0.1702 0.6932 ± 0.1630 0.4384 ± 0.1569 0.5821 ± 0.1066
KM 10 0.7787 ± 0.1315 0.7607 ± 0.0872 0.7533 ± 0.0079 0.7642 ± 0.0106

HM 1 0.8684 ± 0.0576 0.8159 ± 0.1195 0.8073 ± 0.0620 0.8305 ± 0.0270
HM 10 0.9329 ± 0.0266 0.9218 ± 0.0539 0.8802 ± 0.0453 0.9116 ± 0.0226

Therapist’s Agreement 0.8120 ± 0.1458 0.7790 ± 0.1324 0.7654 ± 0.1382 0.7854 ± 0.0195

that achieve the best F1-score on the classification are summarized
in the Table 5.

For Prediction Models (PMs), we evaluated various approaches:
the neural network trained for feature selection using reinforce-
ment learning (PM - RL), feature selection using Recursive Feature
Elimination (PM - RFE) [14], a decision tree (PM-DT), a linear re-
gression model (PM - LR), a support vector machine (PM - SVM), a
neural network trained with the full set of features (PM - NN).

In addition, we presented the performance of the initial Knowl-
edge Models (KM 1) from the interviews with therapists and that
of the fine-tuned Knowledge Models (KM 10) after accommodating
therapist’s feature-based feedback. For the Hybrid Models (HMs),
we also described the performance of the HM 1 without accommo-
dating additional therapist’s feedback and that of the HM 10 with
additional therapist’s feedback.

For feature selection, our approach has 0.11 higher average F1-
score (𝑝 < 0.01 using a paired t-test over 3 exercises and 3 perfor-
mance components in Table 4) than a model with the Recursive

Feature Elimination (RFE) approach, one of classical feature se-
lection methods, and is expected to perform better to generate
patient-specific analysis for therapists.

The data-driven, Prediction Model with Neural Networks (PM -
NN) achieves a decent agreement level with Therapist 1’s evalua-
tion: 0.8279 average F1-scores over three exercises. In addition, the
PM with NNs outperforms the PM with other algorithms: Decision
Trees (0.7011 average F1-scores), Linear Regression (0.6981 average
F1-scores), Support Vector Machine (0.7204 average F1-scores).

In contrast, the initial rule-based, Knowledge Model 1 (KM 1)
achieves low agreement level with Therapist 1’s evaluation: 0.5827
average F1-scores over all exercises. Non-interactive, Hybrid Model
1 (HM 1) that integrates PM with reinforcement learning and KM
1 achieves 0.8305 average F1-scores over three performance com-
ponents of three exercises, which is slightly higher overall perfor-
mance than the PM with Neural Networks (i.e. PM - NN in Table 3).
However, integrating two modalities of assessment does not always
improve the performance of a model (e.g. the performance of the
HM 1 for Exercise 2).

6.2 User Study with Therapists
For the evaluation of our interactive approach, therapists reviewed
user-specific analysis of our system, and provided nine feature-
based feedback on each patient to tune a system. Specifically, on
average, they added 7.26 new features, removed 0.33 features, and
updated 1.06 threshold values over 15 patients.

While accommodating therapist’s additional nine feature-based
feedback on each patient, both Knowledge Model (KM) and Hybrid
Model (HM) improve their performance on all exercises (Figure 6).
The KM improves its agreement level 31% from 0.5821 to 0.7642
average F1-scores over all exercises. Similarly, our interactive Hy-
brid Model (HM) also significantly improves it agreement level 9.7%
from 0.8305 to 0.9116 average F1-scores (𝑝 < 0.01), which outper-
forms the PM with Neural Networks (PM - NN) and therapist’s
agreement (Table 3). Specifically, the improvement is statistically
significant using paired t-test over 3 exercises and 3 performance
components (Table 4).
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Table 4: Performance comparison between the proposed method and baseline models to assess the quality of motion (‘Correct’
and ‘Incorrect’) with F1-Scores. Best results have been boldfaced. ‡ indicates HM10 is statistically better than the compared
method (pairwise t-tests at 99% significance level)

.
Models Algorithms Exercise 1 Exercise 2 Exercise 3

ROM Smooth Comp ROM Smooth Comp ROM Smooth Comp

PM

RL ‡ 0.8265 ± 0.2826 0.8351 ± 0.2586 0.8378 ± 0.2360 0.7998 ± 0.3442 0.7093 ± 0.3119 0.8828 ± 0.2210 0.7482 ± 0.2775 0.8372 ± 0.2373 0.8307 ± 0.2372
RFE ‡ 0.7013 ± 0.4316 0.5931 ± 0.4521 0.7284 ± 0.3658 0.9161 ± 0.1893 0.5787 ± 0.4789 0.7938 ± 0.3430 0.5726 ± 0.3942 0.7302 ± 0.3771 0.6217 ± 0.3706
DT ‡ 0.6366 ± 0.4339 0.7349 ± 0.3794 0.6988 ± 0.3969 0.8630 ± 0.2683 0.7786 ± 0.3513 0.6520 ± 0.3667 0.7062 ± 0.3967 0.6109 ± 0.3494 0.6295 ± 0.3886
LR ‡ 0.7899 ± 0.3396 0.7377 ± 0.2670 0.6463 ± 0.3633 0.7679 ± 0.3487 0.6335 ± 0.3683 0.5277 ± 0.4288 0.7728 ± 0.3061 0.7302 ± 0.3771 0.6771 ± 0.3914
SVM ‡ 0.7276 ± 0.3860 0.7655 ± 0.3388 0.6765 ± 0.3910 0.8028 ± 0.3449 0.7038 ± 0.3364 0.5848 ± 0.4485 0.7471 ± 0.3433 0.7342 ± 0.2988 0.7419 ± 0.3543
NN ‡ 0.9527 ± 0.0942 0.7927 ± 0.3424 0.8443 ± 0.2641 0.8367 ± 0.3363 0.7881 ± 0.2988 0.8917 ± 0.1284 0.7775 ± 0.3378 0.7751 ± 0.3255 0.7929 ± 0.2105

KM 1 Therapist ‡ 0.8432 ± 0.3094 0.4344 ± 0.3910 0.5669 ± 0.4340 0.8466 ± 0.2886 0.4950 ± 0.4094 0.6705 ± 0.4173 0.5320 ± 0.4632 0.2265 ± 0.3140 0.6294 ± 0.3590
KM 10 Therapist ‡ 0.8994 ± 0.2510 0.6956 ± 0.4177 0.6289 ± 0.4189 0.8799 ± 0.3933 0.6120 ± 0.4851 0.6187 ± 0.4746 0.6689 ± 0.4683 0.7302 ± 0.3771 0.6656 ± 0.4931

HM 1 WeightedAvg‡ 0.9321 ± 0.2041 0.8204 ± 0.3009 0.7987 ± 0.3409 0.8558 ± 0.3369 0.6855 ± 0.3794 0.6145 ± 0.4338 0.8011 ± 0.3202 0.6720 ± 0.3584 0.7603 ± 0.3818

HM 10 WeightedAvg 0.9867 ± 0.0381 0.9280 ± 0.1051 0.9439 ± 0.1135 0.9926 ± 0.0277 0.9647 ± 0.0793 0.9733 ± 0.0444 0.9828 ± 0.0444 0.9113 ± 0.1203 0.9617 ± 0.00647

Therapist’s Agreement ‡ 0.9587 ± 0.0489 0.5490 ± 0.0011 0.7289 ± 0.0298 0.9630 ± 0.0427 0.6588 ± 0.1384 0.8223 ± 0.0004 0.7342 ± 0.2418 0.5373 ± 0.1148 0.9046 ± 0.0497

According to the interviews with therapists on the possibility
of accepting our approach in their workflow, therapists mentioned
that our approach with predicted assessment and user-specific
analysis is “easy to use”, and “quickly summarizes quantitative data to
provide useful insights on patient’s performance" [29]. Although the
prediction of our approach sometimes mismatched with therapist’s
assessment, therapists considered reviewing predicted assessment
and user-specific analysis of our approach is useful to “validate
whether a system fails to predict correctly or I make a mistake” [29].
Overall, therapists are positive to accept our approach in their
practices.

7 DISCUSSION
Our results demonstrate how machine and human intelligence can
work together for a complex task (e.g. rehabilitation assessment).
As initial high-level rules from therapists are not tuned for each
individual patient, the initial Knowledge Model (KM 1 in Table 3)
performs worse than various approaches of data-driven Prediction
Models (PMs). This implies the necessity of generating personalized
rules to assess the performance of patients with various physical
characteristics and functional abilities.

To elicit therapist’s feedback for personalized rehabilitation as-
sessment, our approach can automatically identify salient features
for assessment and generate a succinct user-specific analysis. This
user-specific analysis provides therapists new insights on patient’s
performance [29]. After better understanding patient’s exercise
performance with quantitative data, therapists can provide feature-
based feedback to refine an imperfect model.

While accommodating therapist’s feature-based feedback, the
KM improves its performance to a similar level of the PM with
Support Vector Machine (i.e. PM - SVM in Table 3). This tuned
KM provides another valuable perspective on assessment, which
also leads to the improvement on the performance of the Hybrid
Model (HM). Specifically, our interactive HM (i.e. HM 10 in Table
3) achieves significantly higher agreement with Therapist 1 than
Therapist 2 (i.e. therapist’s agreement in Table 3). This implies
the feasibility of consistently replicating therapist’s assessment to
improve the current practice of monitoring patient’s exercises and
supporting therapist’s decision making.

Overall, the results of our interactive hybrid approach demon-
strate how data-driven and rule-based models can complement each
other for a more accurate, personalized rehabilitation assessment
model. However, although feature selection supports to generate
a user-specific analysis, as a supplementary explanation on the
prediction of a model, it is still challenging to derive a full interpre-
tation of complex algorithms for accommodating user’s feedback.
In addition, this work explores only feature-based feedback during
few interactions with therapists. Further study is required to inves-
tigate whether this approach can also be personalized over a longer
time period while patient’s functional ability changes, and can be
applied to another exercises.

8 CONCLUSION
In this paper, we present an interactive hybrid approach that can
automatically generate a user-specific analysis to support thera-
pist’s understanding on patient’s performance and accommodate
therapist’s feedback for personalized rehabilitation assessment. Our
experimental results show that presenting a user-specific analysis
is useful to improve therapist’s understanding on the task of reha-
bilitation assessment. Specifically, therapists can provide feedback
to tune a generic model to a personalized model with improved
performance. Our work highlights the importance of presenting a
supplementary explanation on the prediction of a model and creat-
ing an interactive machine learning-based system that can augment
data-driven models with expert’s knowledge to tune imperfect mod-
els. We believe this study can be served as a valuable reference to
develop an interactive machine learning-based system for critical,
medical decision making tasks (e.g. rehabilitation assessment).

A APPENDIX

Table 5: Parameters of Neural Networks

Hidden Layers and Units / Learning Rate
ROM Smooth Comp

E1 (32, 32, 32) / 0.1 (16) / 0.0001 (256, 256) / 0.1
E2 (256) / 0.1 (512, 512) / 0.1 (128) / 0.1
E3 (256) / 0.1 (64, 64) / 0.001 (128, 128) / 0.1
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