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1 Introduction

Function approximation is to find the underlying relationship between finite input and output of data.
Learning such a mapping between an input and output is the fundamental problem in diverse real
world applications, such as prediction, pattern recognition, and classification. Various methods have
been developed to address this problem, in which one of them is to use a neural network model. A
neural network model has great expressive power [9]. Recently, it has become increasing popular
technique for machine learning tasks (e.g. image classification, speech recognition) [11, 7]. However,
a deep neural network works mostly as a black-box solution. The theoretical understanding on how it
works remain limited.

This paper aims to survey and review some existing works that analyze a shallow neural network
in a statistical perspective. Given a neural network with significant representation capability, this
work will elaborate the constraints for the success of a neural network. Based on the results of
[3, 4], this paper will describe the estimation error between the target function and the estimated
network. Furthermore, this paper will review the results of [5, 9] to describe the ability of feedfoward
neural networks to learn and achieve a universal approximation. This implies that there exists an
estimated neural network that approximates any measurable function. In addition, this paper describe
a convergence analysis for Stochastic Gradient Descent on a neural network with identity mapping
structure, rich subset of two-layer feedforward network with ReLU activations [10]. Overall, this
paper will include only limited statistical analysis on shallow neural networks (i.e. neural network
models with one or two hidden layers). More a rigorous statistical analysis of neural networks with
multiple hidden layers is an open and important problem. Still, a brief statistical review of this paper
might provide another perspectives for researchers to understand the properties of neural networks.

2 Notation and Assumption

2.1 Single Layer Neural Network Models

Let assume that we have n pairs of input output data in the form of (xi, yi) for i = 1, ..., N . Let
xi ∈ Rd and yi ∈ R for i = 1, ..., N . We assume that both input and output are bounded. We
seek to find an unknown function f(x) : Rd → R. In addition, this paper assumes that (xi, yi) for
i = 1, ..., N are independently drawn from a distribution Px,y. It also assumes that the response
variable is subject to an error that is yi = f(xi) + ei, where E(ei|xi) = 0 that the errors, ei are
bounded and independent from the inputs xi for i = 1, ..., N .

Functions f(x) with bounded domain in Rd can be approximated using feed-forward neural network
models. The network models with one layer of sigmoid nonlinear activation functions is defined as
follows:

fh(x) = fh(x, θ) =

h∑
k=1

ckφ(aTk x+ bk) + c0 (1)

The approximation function, fh is parameterized by the vector θ that consists of weight vector
ak ∈ Rd and bias terms bk, ck ∈ R for k = 1, ..., h and c0 ∈ R. h describes the number of nonlinear
terms, which are also known as nodes or hidden units. h ≥ 1.
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φ is an activation function. The function x → φ(aTk x + bk) describes the k-th hidden units. In
this paper, we assume the function φ(z) to be a sigmoid function. The function is assumed to be a
sigmoid function if it is a bounded function that satisfies following conditions: φ(z)→ 1 as z →∞
and φ(z)→ −1 as z → −∞, where z = aTk x+ bk.

Let define a Fourier representation of the form f(x) =
∫
Rd
eiw

T xf̃(w)dw. We define Cf =∫
|w|1F (dw), where F = |F̃ | is the Fourier magnitude of distribution of f and |w|1 =

∑d
j=1 |wj |,

the l1 norm of w in Rd. Cf is finite.

2.2 Empirical Risks and Complexity of Estimator

The empirical risk of an estimated network f̂h,N is defined as 1
N

∑N
i=1(yi − fh(xi, θ))

2, where the
square loss is applied given N data samples. For each number of nodes h and sample size N, let define
Ωh = Ωh,N be a discrete set of parameter vectors θ and Lh,N (θ) be nonnegative numbers satisfying
Lh,N (θ) ≥ l for some constant l > 0, and

∑
θ∈Ωh

e−Ln,N (θ) ≤ 1.

Let define the index of resolvability given h and N as follows:

Rh,N (f) = min
θ∈Ωh

(
∥∥f − f̄n(̇, θ)

∥∥2
+ λ

Lh,N (θ)

N
) (2)

where λ is a given positive constant from Theorem 3.2. This equation gives the resolvability for a
neural network family with a given number of nodes h. For the collection of networks, the index of
resolvability is as follows:

RN (f) = min
n≥1

(Rh,N (f) + λ
L(h)

N
) (3)

This minimization determines the h that leads to the best resolvability.
The minimum complexity estimator of neural network with h hidden nodes is as follows:

f̂h,N (x) = f̄h(x, ˆθh,N )

where

ˆθh,N = arg min
θ∈Ωh

(
1

N

N∑
i=1

(yi − f̄h(xi, θ))
2 + λ

Lh,N (θ)

N
)) (4)

Thus, f̂h,N denotes the least square estimator with a complexity penalty. The minimum complexity
estimator with both h and θ, f̂N = f̂n̂,N can be found similarly.

2.3 Function Spaces

2.3.1 Continuous functions, Borel measurable functions

Let Cr be the set of continuous function from Rr to R, where r ∈ N and let Mr be the set of all
Borel measurable functions from Rr to R. We denote the Borel σ-field as Br.

For any Borel measurable φ, the class of functions in the form of the Equation (1) belong to Mr. If φ
is continuous, the class of functions in the form of the Equation (1) belong to Cr.

Closeness of functions f and g belonging to Cr or Mr is measured by a metric, ρ. Closeness of one
class of functions to another class is described by the concept of denseness.

2.3.2 Denseness

A subset S of a metric space (X, ρ) is ρ - dense in a subset T if for every ε > 0 and for every
t ∈ T , there is an s ∈ S such that ρ(s, t) < ε. A subset S of Cr is said to be uniformly dense
on compacta in Cr if for every compact subset K ⊂ Rr. S is ρK-dense in Cr, where f, g ∈ Cr
ρK(f, g) ≡ supx∈K |f(x)− g(x)|. A sequence of functions fn converges to a function f uniformly
on compacta if for all compact K ⊂ Rr ρk(fn, f)→ 0 as n→∞.

An element of S can approximate an element of T to any desired degree of accuracy. In the theorems
of this paper, T and X correspond to Cr or Mr, S corresponds to a neural network with the form of
the Equation (1) for specific choice of φ, and ρ is chosen appropriately.
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2.3.3 Probability Measure

Let µ be a probability measure on (Rr, Br). If f and g belong toMr, we say that they are µ-equivalent
if µ{x ∈ Rr : f(x) = g(x)} = 1.

The measure µ describes the relative frequency of occurrence of input patterns x. Taking µ to be a
probability measure (i.e. µ(Rr) = 1) is a matter of convenience. The Theorems in the results hold
for arbitrary finite measures.

Given a probability measure µ on (Rr, Br), we define the metric ρµ from Mr ×Mr to R+ by
ρµ(f, g) = inf{ε > 0 : µ{x : |f(x) − g(x)| > ε} < ε}. Two functions are close in this metric if
and only if there is only a small probability that they differ significantly.

2.3.4 Two-layer Neural Networks with ReLU Activation

This paper utilizes a subset of two-layer feed-forward neural networks with ReLU activation functions
to analyze convergence for SGD. This subset is characterized by a special structure called identity
mapping. Specifically, we consider the following function:

f(x,W ) =
∥∥ReLU((I +W )Tx)

∥∥
1

(5)

where ReLU(x) = max(v, 0) describes the ReLU activation function. x ∈ Rd is the input vector
sampled from a Gaussian distribution, N(0, I), W ∈ Rd×d is the weight matrix (i.e. (w1, ..., wn)),
where d is the number of input units. Note that I adds ei to column i of W , which makes f
asymmetric. We get different functions by switching any two columns in W .

We assume that there exists a two-layer teacher network with weight W ∗ = (w∗1 , ..., w
∗
n) following

the standard setting in [13, 15]. We train the student network using l2 loss as follows:

L(W ) = Ex[(f(x,W )− f(x,W∗))2] (6)
,where f(x, W*) and f(x, W) represent the teacher and student network respectively.

Given the loss function, Equation. (6), we take derivative with respect to wj , we get the gradient as
follows:

∇L(W )j = 2Ex[(
∑
i

ReLU(< ei+wi, x >)−
∑
i

ReLU(< ei+w
∗
i , x >))x1<ej+wj ,x>≥0] (7)

where 1e is the indicator function that equal 1 if the event e is true and 0 otherwise.

Denote θi,j as the angle between ei + wi and ei + wi and θi∗,j as the angle between ei + w∗i and
ei+wi. Denote v̄ = v

‖v‖2
. Denote I +W ∗ and I +W as the column-normalized version of I+W ∗

and I +W such that every column has unit norm. As the input is from a normal distribution, we can
compute the expectation inside the gradient [15] as follows:

If x ∼ N(0, I), then −∇L(W )j =
∑d
i=1(π2 (w∗i − wi) + (π2 − θi∗,j)(ei + w∗i )− (π2 − θi∗,j)(ei +

wi) + (‖ei + w∗i ‖2 sin θi∗,j − ‖ei + wi‖2 sin θi,j)ej + wj)

If we assume input x is from the Gaussian distribution, even if the gradient of ReLU is not well
defined at the point of zero, the loss function becomes smooth, and the gradient is well defined
everywhere.

Denote u ∈ Rd as the all one vector. Denote Diag(W ) as the diagonal matrix of matrix W ,
Diag(v) as a diagonal matrix whose main diagonal equals to the vector v. Denote Off-Diag(W ) ≡
W−Diag(W). Denote [d] as the set {1, ..., d}. We use the notation of inner product between matrices
W,W ∗,∇L(W ), such that < ∇L(W ),W > means the summation of the entry-wise products.
‖W‖2 is the spectral norm of W, and ‖W‖F is the Forbenius norm of W .

We define the potential function g ≡
∑d
i=1(‖ei + w∗i ‖2 − ‖ei + wi‖2) and variable gj ≡∑

i 6=j(‖ei + w∗i ‖2 − ‖ei + wi‖2)

We also define additional variables, Aj and A as follows: Aj ≡
∑
i6=j((ei + w∗i )ei + w∗i

T − (ei +

wi)ei + wi
T

) and A ≡
∑d
i=1((ei + w∗i )ei + w∗i

T − (ei + wi)ei + wi
T

) = (I +W ∗)I +W ∗
T −

(I +W )I +W
T

.
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This paper considers the standard SGD with mini-batch method for training a neural network. Assume
W0 is the initial point, and in step t > 0, we have the following updaing rule:

Wt+1 = Wt − ηtGt
where the stochastic gradient Gt = ∇L(Wt) + Et with E[Et] = 0 and ‖Et‖F ≤ ε. Let G2 ≡
6dγ + ε,GF ≡ 6d1.5γ + ε, which are the upper bound of ‖Gt‖2 and ‖Gt‖F respectively. γ is the
upper bound of ‖W ∗‖2 and ‖W0‖2.

L is not convex, so we need a weaker condition to get convergence guarantees, which is called
one-point strongly convexity. A function f(x) is δ-one point strongly convex in domain D with
respect to point x∗, if ∀x ∈ D,< −∇f(x), x∗ − x >> δ ‖x∗ − x‖22 By the definition, if a function
is strongly convex, it is also one-point strongly convex in the entire space with respect to the global
minimum. As long as the step size is small enough, we will finally arrive the optimal point by a
winding path.

For function f(W ), consider the SGD update Wt+1 = Wt − ηGt, where E[Gt] =

∇f(Wt), E[‖Gt‖2F ] ≤ G2. Suppose for all t, Wt is always inside the δ-one point strongly con-
vex region with diameter D (i.e. ‖Wt −W ∗‖F ≤ D). Then for any α > 0 and any T such that

TαlogT ≥ D2δ2

(1+α)G2 , if η = (1+α)logT
δT , we have E ‖WT −W ∗‖2F ≤

(1+α)logTG2

δ2T .

3 Key Results

3.1 Approximation Error Bounds for Neural Networks

Theorem 3.1 Given an arbitrary sigmoid function φ, a target function f with finite Cf , and a
probability measure µ on a domain in [−1, 1]d, there exists a neural network of the form Equation
(1), such that

‖f − fh‖ ≤ δ =
Cf√
h

(8)

The parameters of Equation (1) may be restricted to satisfy
∑h
k=1 |ck| ≤ C, |c0 − f(0)| ≤ C and

|bk| ≤ |ak|1 for functions f with Cf ≤ C.

Theorem 3.2 Let a neural network be estimated by least square with a complexity penalty as in
Equation (4), where the range of y and each candidate function is restricted to a know interval of
length b, then for λ > 5b2

3 , for all h ≥ 1, and all N ≥ 1.

E
∥∥∥f − f̂h,N∥∥∥2

≤ γRh,N (f) + 2γλ
N and E

∥∥∥f − f̂N∥∥∥2

≤ γRh,N (f) + 2γλ
N , where γ = (3λ+b2)

(3λ−5b2) .
Thus,

E
∥∥∥f − f̂N∥∥∥2

≤ O(RN (f)) (9)

The index of resolvability captures the effect of the approximation error ‖f − fh‖2 and the estimation

error E
∥∥∥fh − f̂h,N∥∥∥2

.

Theorem 3.3 Let f̂h,N,C(x) be the least square neural network estimator that minimizes the mean
square error estimator subject to the constraints of parameter vector, satisfying that ‖f − fh‖ ≤ Cf√

h
,

where Cf denotes a bounded absolute magnitude of a Fourier transform of true regression function f.
Cf < C. Then, for an estimated neural network model with h hidden units, the global accuracy of
the estimator is bounded as follows:

E
∥∥∥f − f̂h,N,Cf

∥∥∥2

≤ O(
C2

h
) +O(

hd

N
logN) (10)

where d is the dimension of inputs and N is the total number of training samples.
Furthermore, we can choose h = O( dN logN)

1
2 and get the upper bound as follows:

E
∥∥∥f − f̂h,N,Cf

∥∥∥2

≤ O(
d

N
logN)

1
2 (11)
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This result states that the rate of convergence as a function of the sample size N is of order ( 1
N )

1
2

(times a logarithmic factor), where the exponent 1
2 is independent of the dimension d in terms of

the behavior of the risk. Note that although the rate ( 1
N )

1
2 as a function of N is independent of the

dimension d, it is possible for the constant to be exponentially large in d for sequences of functions f
of increasing dimensionality.

3.2 Universal Approximation

The universal approximation theorem states that a feed-forward neural network with a single hidden
layer containing a finite number of neurons can approximate continuous functions on compact of
Rd under assumptions on the activation function. It describes that a simple neural networks in the
form of Equation (1) can represent a wide variety of interesting functions when given appropriate
parameters.

First, Cybenko, George [5] described this universal approximation theorem for sigmoid functions
with the following theorem.

Theorem 3.4 Let φ be bounded measurable sigmoid activation function. Let Id denote the d-
dimensional unit hypercube [0, 1]d. The space of continuous function on Id is denoted by C(Id).
Then, for any ε > 0 and any function f ∈ C(Id), there exists an integer N, real constants ck, bk ∈ R
and real vectors ak ∈ Rd, where k = 1, ..., h, such that we define a neural network of the form
Equation (1) as an approximate realization of the function f. Then, there is a fh for which

|f − fh| ≤ ε (12)

for all x ∈ Id. In other words, functions of the form fh are dense in C(Id).

In addition, Kurt [9] showed that the choice the activation function is not specifically limited to a
sigmoid function. Instead, Kurt described the universal approximate theorem is applicable regardless
of the activation function. Thus, the multilayer feedforward architecture itself gives neural networks
the potential of being universal approximators. The output units are always assumed to be linear.

Theorem 3.5 Let φ be any continuous non-constant function from R to R. Then, a neural network of
the form Equation (1) with an activation function φ is uniformly dense on compacta in Cr.

Theorem 3.5 implies that a feed-forward neural network in the form of the Equation (1) is capable of
arbitrarily accurate approximation to any real-valued continuous function over a compact set. This
result indicates that the activation function φ is not required to be a squashing, sigmoid function even
if it is allowed. The activation function may be any continuous non-constant function.

Theorem 3.6 For every continuous non-constant function φ, every r, and every probability measure
µ on (Rr, Br), a feed-forward neural network in the form of the Equation (1) is ρµ-dense in Mr

Theorem 3.6 implies that a feed-forward neural network with a single hidden layer in the form of the
Equation (1) can approximate any measurable function arbitrarily well, regardless of the continuous
non-constant function φ used, regardless of r and µ. It implies that feed-forward neural networks in
the form of the Equation (1) is an universal approximation.

Theorem 3.7 For every squashing function φ, every r, and every probability measure µ on (Rr, Br),
a feed-forward neural network in the form of the Equation (1) is uniformly dense on compacta in Cr
and ρµ-dense in Mr.

Theorem 3.7 implies that feed-forward neural networks in the form of the Equation (1) is an universal
approximation again regardless of the squashing, sigmoid function φ (continuous or not).

Corollary 3.1 For every function g in Mr, there is a compact subset K of Rr and an f in the form
of the Equation (1) such that for any ε > 0, we have µ(K) < 1− ε and for every x ∈ K we have
|f(x)− g(x)| < ε, regardless of φ, r, orµ
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Corollary 3.1 implies that there is a feed-forward neural network with a single hidden layer in the
form of the Equation (1) that approximates any measurable function to any desired degree of accuracy
on some compact set K of input patterns that to the same degree of accuracy has measure, probability
of occurrence 1. The difference between the Theorem 3.5 and the Corollary 3.1 is that in the Theorem
3.5, g is continuous and K is an arbitrary compact set. In the Corollary 3.1, g is measurable and K
must be chosen specifically.

Theorem 3.8 Let {x1, ..., xh} be a set of distinct points in Rr and let g : Rr → R be an arbitrary
function. If φ achieves 0 and 1, then there is a feed-forward neural network in the form of the
Equation (1) with h hidden units such that f(xi) = g(xi), i ∈ {1, ..., h}.

Theorem 3.8 implies that functions with finite support can be approximated exactly with a single
hidden layer.

Corollary 3.2 Theorem 3.7 and Corollary 3.1 remain valid for multilayer feed-forward neural
networks with l layers mapping RrtoRs using squashing, sigmoid functions in Cr,sandMr,s with
ρsµ, ρ

s
µ(f, g) ≡

∑s
i=1 ρµ(fi, gi)

Corollary 3.2 implies that multi-output multilayer feed-forward neural networks are universal approx-
imators of vector-valued functions. It describes the approximation capabilities of multi-output neural
networks with multiple hidden layers.

3.3 Convergence Analysis of Two-layer Neural Networks with ReLU Activation

Theorem 3.9 There exists constants γ > γ0 > 0 such that if x ∼ N(0, I), ‖W0‖2 , ‖W ∗‖2 ≤
γ0, d ≥ 100, εγ2, thenSGDforL(W )willfindthegroundtruthW ∗bytwophases. (Phase 1)
when we set η ≤ γ2

G2
2

, the potential function will keep decreasing until it is smaller than 197γ2,

which takes at most 1
16 steps. (Phase 2) for any α > 0 and any T such that TαlogT ≥ 36d

1004(1+α)G2
F

,

if we set η = (1+α)logT
δT , we have E ‖WT −W ∗‖2F ≤

1002(1+α)logTG2
F

9T .

Theorem 3.9 implies that WT will be sufficiently close to W ∗ with small step size η.

4 Proof Outlines

4.1 Approximation Error Bounds for Neural networks

Theorem 3.1: Let constrain |ak|1 to be no larger than τh, where τh indicates the rate at which φ(z)
approaches its limits. It is bounded by a polynomial function of h i.e., τh ≤ r0h

r1 for some r0, r1 >
0. Let denote dist(φτ , sgn) the distance between the scaled sigmoid function and the signum function
as follows: inf0<ε< 1

2
(2ε+ sup|z|≥ε |φ(τz)− sgn(z)|).

Then, under the same restrictions in Theorem 3.1, there exists a neural network model of the Equation
(1) such that ‖f − fh‖ ≤ δ + Cf dist(φτ , sgn). If we assume that τ is chosen accordingly such that
we have dist(φτ , sgn) ≤ 1√

h
. Then, ‖f − fh‖ ≤ 2Cf√

h
.

Theorem 3.2: The detailed proof can be found in [2]. The key idea is based on that it is possible to
obtain bounds on the total mean square eror by controlling these sources of error. By the triangle
inequality, we have the following statement:

∥∥∥f − f̂h,N∥∥∥ ≤ ‖f − fh‖+
∥∥∥fh − f̂h,N∥∥∥.

Theorem 3.3: Let Ω be a discrete set of parameter points. For every θ ∈ Ω, there is a θ∗, such that
|ak − a∗k|1 ≤ ε, |bk − b∗k| ≤ ε,

∑h
k=1 |ck − c∗k| ≤ Cε and |c0 − c∗0| ≤ Cε for ε > 0 and C ≥ 1

uniformly for x. Then, we have |fh(x, θ) − fh(x, θ∗)| ≤ 4vCε, where fh(x, θ) is the family of
sigmoid networks of the Equation (1).

For function f with Cf ≤ C, there exists a neural network approximation fh with parameter
restriction such that ‖f − fh‖ ≤ 2Cf√

h
+ 4vCε. If a εh is selected to be order O(1/

√
h), then the

approximation error remains the same order as Theorem 3.1. ‖f − fh‖ = O(C/
√
h).
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We can also find the bound of log#Ωh,ε,τh,C as mhlog( 2e(1+τh
ε ), where mh = h(d + 2) + 1.

Then, we can bound the index of resolvability in Equation (2) as follows: Rh,N (f) ≤ ‖f − fh‖2 +

λ
N log#Ωh,ε,τh,C ≤ O(C

2

h +O(hdN log
τ2
hN
hd ). Thus, by Theorem 3.2, we achieveE

∥∥∥f − f̂h,N,Cf

∥∥∥2

≤

O(C
2

h ) +O(hdN logN).

4.2 Universal Approximation

Theorem 3.4: Let S ⊂ C(Id) be the set of functions of the form fh(x) in the Equation (1). S is a
linear subspace of C(Id), so that the closure of S is all of C(Id).

If we assume that the closure of S is not all all of C(Id), the closure of S is a closed proper subspace
of C(Id). By Hahn-Banach theorem [12], there is a bounded linear functional on C(Id), L. By the
Riesz Representation Theorem [8], this bounded linear functional, L has the form of L(h) for some
µ ∈M(Id). This condition implies that µ = 0. However, this condition contradicts our assumption
that φ is discriminatory. Thus, the subspace S must be dense in C(Id). fh(x) is dense in C(Id),
providing that φ is continuous and discriminatory.

Then, we can show that any continuous sigmoid function is discriminatory. By the Lesbegue Bounded
Convergence Theorem [14], we can derive the measure of all half-planes being 0. This implies that
the measure µ itself must be 0. We can check that the Fourier Transform of µ is 0 and so µ must be
zero as well. Hence, any continuous sigmoid function is discriminatory.

Theorem 3.5: Let A be an algebra of real continuous functions on a compact set K. If A separates
points on K and if A vanishes at no point of K, then the uniform closure B of A consists of all real
continuous functions on K. This implies that A is ρK -dense in the space of real continuous functions
on K from Stone-Weierstrass Theorem.

Let K ⊂ Rr be any compact set. For any φ, a neural network with the form of the Equation (1) is an
algebra on K. We can ensure that it is separating on K. The Stone-Weierstrass Theorem implies that a
neural network is ρK-dense in the space of real continuous functions on K. The results follows as K
is arbitrary.

Theorem 3.6: Given any continuous non-constant function, from the Theorem 3.5 and the fact that if
{fn} is a sequence of functions in Mr that converges uniformly on compacta to the function f , then
ρµ(fn, f)→ 0, a feed-forward neural network in the form of the Equation (1) is ρµ-dense in Cr.

For any finite measure µ, Cr is ρµ-dense in Mr. As Cr is ρµ-dense in Mr, it follows that a neural
network in the form of the Equation (1) is ρµ-dense in Mr by applying triangle inequality.

The extension from continuous to arbitrary squashing function can be achieved with the following
statement. Let F be a continuous squashing function and an arbitrary squashing function. For
every ε > 0, there is an element He of a neural network in the form of the Equation (1) such that
supλ∈R|F (λ)−He(λ)| < ε.

Theorem 3.7: For every squashing function, a neural network in the form of the Equation (1) is
uniformly dense on compacta in Cr. if {fn} is a sequence of functions in Mr that converges
uniformly on compacta to the function f , then ρµ(fn, f)→ 0.

It implies that a neural network in the form of the Equation (1) is ρµ-dense in Cr. For any finite
measure µ, Cr is ρµ-dense in Mr. With the triangle inequality, we can find that a neural network in
the form of the Equation (1) is ρµ-dense in Mr

Corollary 3.1: Let fix ε > 0. By Lusin’s theorem [1], there is a compact set K1 such that µ(K1) >
1− ε

2 and g|K1(g restricted to K1 is continuous on K1. By the Tietz extension theorem [6], there is
a continuous function g′ ∈ Cr such that g′|K ′ = g|K1 and supx∈K1g|K1(x).

For every k the class of Jk that indicates a neural network is uniformly dense on compacta in Cr.
If we take f such that supx∈K2 |f(x) − g′(x)| < ε. Then, supx∈K1∩K2 |f(x) − g(x)| < ε and
µ(K1 ∩K2) > 1− ε
Theorem 3.8: We can first prove its validity when {x1, ..., xh} ⊂ R1. Let order x so that x1 < x2 <
... < xh−1, < xh. Let pick M > 0 such that φ(−M) = 1 − φ(M). Let define A1 as the constant
affine function A1 = M0, set c1 = g(x1), and set f1(x) = c1φ(A1(x1)).
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Since f1(x) ≡ g(x1), we have f1(x1) = g1(x1). Inductively, we define Ah by Ah(xh−1) = −M
and Ah(xh) = M and define ch = g(xh) − g(xh−1). And set fh(x) =

∑h
k=1 ckφ(Ak(x)). For

k ≤ l, fh(xk) = g(xk). Then, f(x) is the desired function. We can also extend the results to Rr.

Corollary 3.2: We can approximate each gi to become within ε
δ , using vectors ci that is 0 except

in the i-th position. Adding together δ approximations keeps us within the classes of approximate
functions in Cr,s and Mr,s.

Let F (resp. G) be a class of functions from R to R (resp. Rr to R) that is uniformly dense on
compacta in Cr (resp. Cr). The class of functions G ◦ F = {f ◦ g : g ∈ Gandf ∈ F} is uniformly
dense on compacta in Cr. Then, for every k the class of Jk that indicates multioutput multilayer
neural networks is uniformly dense on compacta in Cr. For every squashing function, a neural
network is uniformly dense on compacta in Cr. We can complete the proof with the induction
hypothesis.

4.3 Convergence Analysis of Two-layer Neural Networks with ReLU Activation

Theorem 3.9: First, we would like to check whether L is one-point convex. When we check the
negative gradient in the Section 5, the first two terms have positive inner products. The last term can
point to arbitrary direction. If the last term is small, it can be covered by the first two terms. We
can define a potential function closely related to the last term. Thus, L becomes one-point strongly
convex.

(Phase 1) We then show the potential function actually decreases O(1) after polynomial number of
iterations by getting joint update rules. After solving this dynamics, we can show that gt will approach
to (and stay around) O(γ). There exists a constant γ > γ0 > 0 such that if ‖W0‖2, ‖W ∗‖2 ≤ γ0,
d ≥ 100, ηle

γ2

G2
2
, ε ≤ γ2, then gt will keep decreasing by a factor of 1− 0.5ηd for every step until

gt1 ≤ 197γ2 for step t1 ≤ 1
16η .

(Phase 2) We can use the Taylor expansion and control the higher order terms (i.e. write θi∗,j = argcos
and expand arccos at point 0. Then, we consider joint Taylor expansion. As W approaches W ∗, the
second term of joint Taylor expansion tends to be zero. There exists a constant γ such that if ‖W‖2,
‖W ∗‖2 ≤ γ, g ≤ 0.1, then, <−∇L(W ),W ∗ −W> > 0.03 ‖W ∗ −W‖2F . Thus, our approximation
has bounded error. By setting δ = 0.03, D =

√
d

50 , G = GF with our definitions, we can get the
convergence guarantee.

5 Conclusions

This paper describes statistical analysis on shallow neural networks. First, approximation error bound
of neural network with single hidden layers and sigmoid functions is described, which is O(N−

1
2 ).

It implies that a single hidden layer neural network does not require exponentially large sample
numbers to achieve the same approximate errors. In addition, we describe the expressive power
of neural network by showing universal approximation. Specifically, single-layer neural network
with a sigmoid function can represent a various functions under the mild assumptions of activation
functions. We also show that this result is applicable to any continuous non-constant activation
function. Lastly, we describe convergence analysis for SGD on a subset of two-layer neural networks
with ReLU activation. Assuming that input is sampled from Gaussian distribution with standard
O( 1√

d
) initialization of the weights, we describe SGD converges to global minimum in polynomial

number of steps.

Although the presented results are not applicable to the deep neural networks, the results on shallow
neural network provide an insight why the application of neural networks to high-dimensional settings
can lead to meaningful representation/analysis. For the understanding of the current popularity of
deep learning in various domains (e.g. speech, vision, NLP), more rigorous analysis on neural
networks is necessary.
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